nicholasKluge's picture
Update README.md
3d4a667
|
raw
history blame
4.42 kB
---
license: bigscience-bloom-rail-1.0
datasets:
- nicholasKluge/instruct-aira-dataset
language:
- pt
metrics:
- accuracy
library_name: transformers
tags:
- alignment
- instruction tuned
- text generation
- conversation
- assistant
pipeline_tag: text-generation
widget:
- text: "<|startofinstruction|>Como você se chama?<|endofinstruction|>"
example_title: Saudações
- text: "<|startofinstruction|>Me explique o que é Aprendizagem de Máquina?<|endofinstruction|>"
example_title: Aprendizagem de Máquina
- text: "<|startofinstruction|>Você sabe alguma coisa sobre a Ética das Virtudes?<|endofinstruction|>"
example_title: Ética
- text: "<|startofinstruction|>Como eu posso fazer a minha namorada feliz?<|endofinstruction|>"
example_title: Conselho
inference:
parameters:
repetition_penalty: 1.2
temperature: 0.2
top_k: 30
top_p: 0.3
max_length: 100
length_penalty: 0.3
early_stopping: true
co2_eq_emissions:
emissions: 1.99
source: CodeCarbon
training_type: fine-tuning
geographical_location: Singapore
hardware_used: NVIDIA A100-SXM4-40GB
---
# Aira-2-portuguese-1B7
`Aira-2` is the second version of the Aira instruction-tuned series. `Aira-2-portuguese-1B7` is an instruction-tuned GPT-style model based on [BLOOM](https://huggingface.co/bigscience/bloom-1b7). The model was trained with a dataset composed of prompts and completions generated synthetically by prompting already-tuned models (ChatGPT, Llama, Open-Assistant, etc).
Check our gradio-demo in [Spaces](https://huggingface.co/spaces/nicholasKluge/Aira-Demo-Portuguese).
## Details
- **Size:** 1,722,005,504 parameters
- **Dataset:** [Instruct-Aira Dataset](https://huggingface.co/datasets/nicholasKluge/instruct-aira-dataset)
- **Language:** Portuguese
- **Number of Epochs:** 3
- **Batch size:** 4
- **Optimizer:** `torch.optim.AdamW` (warmup_steps = 1e2, learning_rate = 5e-4, epsilon = 1e-8)
- **GPU:** 1 NVIDIA A100-SXM4-40GB
- **Emissions:** 1.99 KgCO2 (Singapore)
- **Total Energy Consumption:** 4.09 kWh
This repository has the [source code](https://github.com/Nkluge-correa/Aira) used to train this model.
## Usage
Three special tokens are used to mark the user side of the interaction and the model's response:
`<|startofinstruction|>`O que é um modelo de linguagem?`<|endofinstruction|>`Um modelo de linguagem é uma distribuição de probabilidade sobre um vocabulário.`<|endofcompletion|>`
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-2-portuguese-1B7')
aira = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-2-portuguese-1B7')
aira.eval()
aira.to(device)
question = input("Enter your question: ")
inputs = tokenizer(tokenizer.bos_token + question + tokenizer.eos_token, return_tensors="pt").to(device)
responses = aira.generate(**inputs,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.7,
num_return_sequences=2)
print(f"Question: 👤 {question}\n")
for i, response in enumerate(responses):
print(f'Response {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, "")}')
```
The model will output something like:
```markdown
>>> Question: 👤 Qual a capital da Alemanha?
>>>Response 1: 🤖 A capital da Alemanha é Berlim. É a maior cidade da Alemanha e serve como centro administrativo, cultural e político da Alemanha.
>>>Response 2: 🤖 A capital da Alemanha é Berlim. É a maior cidade da Alemanha e serve como centro administrativo, cultural e político da Alemanha.
```
## Limitations
🤥 Generative models can perpetuate the generation of pseudo-informative content, that is, false information that may appear truthful.
🤬 In certain types of tasks, generative models can produce harmful and discriminatory content inspired by historical stereotypes.
## Cite as 🤗
```latex
@misc{nicholas22aira,
doi = {10.5281/zenodo.6989727},
url = {https://huggingface.co/nicholasKluge/Aira-2-portuguese-1B7},
author = {Nicholas Kluge Corrêa},
title = {Aira},
year = {2023},
publisher = {HuggingFace},
journal = {HuggingFace repository},
}
```
## License
The `Aira-2-portuguese-1B7` is licensed under the RAIL License since it is a model derived from BLOOM. See the [LICENSE](LICENSE) file for more details.