|
--- |
|
license: other |
|
datasets: |
|
- nicholasKluge/instruct-aira-dataset |
|
language: |
|
- en |
|
metrics: |
|
- accuracy |
|
library_name: transformers |
|
tags: |
|
- alignment |
|
- instruction tuned |
|
- text generation |
|
- conversation |
|
- assistant |
|
pipeline_tag: text-generation |
|
widget: |
|
- text: "What is your name?<|endofinstruction|>" |
|
example_title: Greetings |
|
- text: "Can you explain what is Machine Learning?<|endofinstruction|>" |
|
example_title: Machine Learning |
|
- text: "Do you know anything about virtue ethics?<|endofinstruction|>" |
|
example_title: Ethics |
|
- text: "How can I make my girlfriend happy?<|endofinstruction|>" |
|
example_title: Advise |
|
inference: |
|
parameters: |
|
repetition_penalty: 1.2 |
|
temperature: 0.2 |
|
top_k: 30 |
|
top_p: 0.3 |
|
max_new_tokens: 200 |
|
length_penalty: 0.3 |
|
early_stopping: true |
|
co2_eq_emissions: |
|
emissions: 0.25 |
|
source: CodeCarbon |
|
training_type: fine-tuning |
|
geographical_location: Singapore |
|
hardware_used: NVIDIA A100-SXM4-40GB |
|
--- |
|
# Aira-OPT-125M |
|
|
|
`Aira-2` is the second version of the Aira instruction-tuned series. `Aira-OPT-125M` is an instruction-tuned OPT-style model based on [OPT](https://huggingface.co/facebook/opt-125m). The model was trained with a dataset composed of prompts and completions generated synthetically by prompting already-tuned models (ChatGPT, Llama, Open-Assistant, etc). |
|
|
|
Check our gradio-demo in [Spaces](https://huggingface.co/spaces/nicholasKluge/Aira-Demo). |
|
|
|
## Details |
|
|
|
- **Size:** 125,237,760 parameters |
|
- **Dataset:** [Instruct-Aira Dataset](https://huggingface.co/datasets/nicholasKluge/instruct-aira-dataset) |
|
- **Language:** English |
|
- **Number of Epochs:** 5 |
|
- **Batch size:** 32 |
|
- **Optimizer:** `torch.optim.AdamW` (warmup_steps = 1e2, learning_rate = 5e-4, epsilon = 1e-8) |
|
- **GPU:** 1 NVIDIA A100-SXM4-40GB |
|
- **Emissions:** 0.25 KgCO2 (Singapore) |
|
- **Total Energy Consumption:** 0.52 kWh |
|
|
|
This repository has the [source code](https://github.com/Nkluge-correa/Aira) used to train this model. |
|
## Usage |
|
|
|
Three special tokens are used to mark the user side of the interaction and the model's response: |
|
|
|
`<|startofinstruction|>`What is a language model?`<|endofinstruction|>`A language model is a probability distribution over a vocabulary.`<|endofcompletion|>` |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-OPT-125M') |
|
aira = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-OPT-125M') |
|
|
|
aira.eval() |
|
aira.to(device) |
|
|
|
question = input("Enter your question: ") |
|
|
|
inputs = tokenizer(tokenizer.bos_token + question + tokenizer.sep_token, |
|
add_special_tokens=False, |
|
return_tensors="pt").to(device) |
|
|
|
responses = aira.generate(**inputs, |
|
do_sample=True, |
|
top_k=50, |
|
top_p=0.95, |
|
temperature=0.7, |
|
num_return_sequences=2) |
|
|
|
print(f"Question: 👤 {question}\n") |
|
|
|
for i, response in enumerate(responses): |
|
print(f'Response {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, "")}') |
|
``` |
|
|
|
The model will output something like: |
|
|
|
```markdown |
|
>>>Question: 👤 What is the capital of Brazil? |
|
|
|
>>>Response 1: 🤖 The capital of Brazil is Brasília. |
|
>>>Response 2: 🤖 The capital of Brazil is Brasília. |
|
``` |
|
|
|
## Limitations |
|
|
|
🤥 Generative models can perpetuate the generation of pseudo-informative content, that is, false information that may appear truthful. |
|
|
|
🤬 In certain types of tasks, generative models can produce harmful and discriminatory content inspired by historical stereotypes. |
|
|
|
## Evaluation |
|
|
|
| Model (OPT) | Average | [ARC](https://arxiv.org/abs/1803.05457) | [TruthfulQA](https://arxiv.org/abs/2109.07958) | [ToxiGen](https://arxiv.org/abs/2203.09509) | | | |
|
|---------------------------------------------------------------------|-----------|-----------------------------------------|------------------------------------------------|---------------------------------------------|---|---| |
|
| [Aira-OPT-125M](https://huggingface.co/nicholasKluge/Aira-OPT-125M) | **43.34** | **24.65** | **49.11** | **56.27** | | | |
|
| OPT-125M | 40.29 | 22.78 | 42.88 | 55.21 | | | |
|
| [Aira-OPT-350M](https://huggingface.co/nicholasKluge/Aira-OPT-350M) | **41.56** | **25.00** | **42.13** | **57.55** | | | |
|
| OPT-350M | 40.62 | 23.97 | 41.00 | 56.91 | | | |
|
| [Aira-OPT-1B3](https://huggingface.co/nicholasKluge/Aira-OPT-1B3) | **43.90** | 28.41 | **46.59** | **56.70** | | | |
|
| OPT-1.3b | 40.91 | **29.69** | 38.68 | 54.36 | | | |
|
|
|
* Evaluations were performed using the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) (by [EleutherAI](https://www.eleuther.ai/)). |
|
|
|
## Cite as 🤗 |
|
|
|
```latex |
|
|
|
@misc{nicholas22aira, |
|
doi = {10.5281/zenodo.6989727}, |
|
url = {https://huggingface.co/nicholasKluge/Aira-OPT-125M}, |
|
author = {Nicholas Kluge Corrêa}, |
|
title = {Aira}, |
|
year = {2023}, |
|
publisher = {HuggingFace}, |
|
journal = {HuggingFace repository}, |
|
} |
|
|
|
``` |
|
|
|
## License |
|
|
|
The `Aira-OPT-125M` is licensed under the OPT-175B License Agreement, Copyright (c) Meta Platforms, Inc. All Rights Reserved. See the [LICENSE](LICENSE.md) file for more details. |