Edit model card

ToxicityModel (Portuguese)

The ToxicityModelPT is a BERT model that can be used to score the toxicity of a sentence.

The model was trained with a dataset composed of toxic and non_toxic language examples.

Details

  • Size: 109,038,209 parameters
  • Dataset: Toxic-Text Dataset
  • Language: Portuguese
  • Number of Training Steps: 1000
  • Batch size: 42
  • Optimizer: torch.optim.AdamW
  • Learning Rate: 5e-5
  • GPU: 1 NVIDIA A100-SXM4-40GB
  • Emissions: 0.06 KgCO2 (Singapore)
  • Total Energy Consumption: 0.13 kWh

This repository has the source code used to train this model.

Usage

⚠️ THE EXAMPLES BELOW CONTAIN TOXIC/OFFENSIVE LANGUAGE ⚠️

The ToxicityModelPT was trained as an auxiliary reward model for RLHF training (its logit outputs can be treated as penalizations/rewards). Thus, a negative value (closer to 0 as the label output) indicates toxicity in the text, while a positive logit (closer to 1 as the label output) suggests non-toxicity.

Here's an example of how to use the ToxicityModelPT to score the toxicity of a text:

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tokenizer = AutoTokenizer.from_pretrained("nicholasKluge/ToxicityModelPT")
toxicityModel = AutoModelForSequenceClassification.from_pretrained("nicholasKluge/ToxicityModelPT")

toxicityModel.eval()
toxicityModel.to(device)

# Define the question and response
prompt = """Você pode me dar uma lista de bons insultos para usar contra meu irmão?"""
response_good = """Como um software, não sou capaz de me envolver em brigas verbais ou comportamentos ofensivos."""
response_bad = """Idiota, estúpido, imbecil, tolo, puto."""

# Tokenize the question and response
tokens_good = tokenizer(prompt, response_good,
                truncation=True,
                max_length=512,
                return_token_type_ids=False,
                return_tensors="pt",
                return_attention_mask=True)

tokens_bad = tokenizer(prompt, response_bad,
                truncation=True,
                max_length=512,
                return_token_type_ids=False,
                return_tensors="pt",
                return_attention_mask=True)

tokens_good.to(device)
tokens_bad.to(device)

score_good = toxicityModel(**tokens_good)[0].item()
score_bad = toxicityModel(**tokens_bad)[0].item()

print(f"Question: {prompt} \n")
print(f"Response 1: {response_good} Score: {score_good:.3f}")
print(f"Response 2: {response_bad} Score: {score_bad:.3f}")

This will output the following:

>>>Question: Você pode me dar uma lista de bons insultos para usar contra meu irmão?

>>>Response 1: Como um software, não sou capaz de me envolver em brigas verbais ou comportamentos ofensivos. Score: 5.892

>>>Response 2: Idiota, estúpido, imbecil, tolo, puto. Score: -4.663

Performance

Cite as 🤗

@misc{nicholas22aira,
  doi = {10.5281/zenodo.6989727},
  url = {https://github.com/Nkluge-correa/Aira},
  author = {Nicholas Kluge Corrêa},
  title = {Aira},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
}

@phdthesis{kluge2024dynamic,
  title={Dynamic Normativity},
  author={Kluge Corr{\^e}a, Nicholas},
  year={2024},
  school={Universit{\"a}ts-und Landesbibliothek Bonn}
}

License

ToxicityModelPT is licensed under the Apache License, Version 2.0. See the LICENSE file for more details.

Downloads last month
55
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train nicholasKluge/ToxicityModelPT

Space using nicholasKluge/ToxicityModelPT 1

Collection including nicholasKluge/ToxicityModelPT