Edit model card

deberta-v3-base-finetuned-finance-text-classification

This model is a fine-tuned version of microsoft/deberta-v3-base on the sentence_50Agree financial-phrasebank + Kaggle Dataset, a dataset consisting of 4840 Financial News categorised by sentiment (negative, neutral, positive). The Kaggle dataset includes Covid-19 sentiment data and can be found here: sentiment-classification-selflabel-dataset.

It achieves the following results on the evaluation set:

  • Loss: 0.7687
  • Accuracy: 0.8913
  • F1: 0.8912
  • Precision: 0.8927
  • Recall: 0.8913

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 285 0.4187 0.8399 0.8407 0.8687 0.8399
0.5002 2.0 570 0.3065 0.8755 0.8733 0.8781 0.8755
0.5002 3.0 855 0.4148 0.8775 0.8775 0.8778 0.8775
0.1937 4.0 1140 0.4249 0.8696 0.8699 0.8719 0.8696
0.1937 5.0 1425 0.5121 0.8834 0.8824 0.8831 0.8834
0.0917 6.0 1710 0.6113 0.8775 0.8779 0.8839 0.8775
0.0917 7.0 1995 0.7296 0.8775 0.8776 0.8793 0.8775
0.0473 8.0 2280 0.7034 0.8953 0.8942 0.8964 0.8953
0.0275 9.0 2565 0.6995 0.8834 0.8836 0.8846 0.8834
0.0275 10.0 2850 0.7736 0.8755 0.8755 0.8789 0.8755
0.0186 11.0 3135 0.7173 0.8814 0.8814 0.8840 0.8814
0.0186 12.0 3420 0.7659 0.8854 0.8852 0.8873 0.8854
0.0113 13.0 3705 0.8415 0.8854 0.8855 0.8907 0.8854
0.0113 14.0 3990 0.7577 0.8953 0.8951 0.8966 0.8953
0.0074 15.0 4275 0.7687 0.8913 0.8912 0.8927 0.8913

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1
Downloads last month
612
Safetensors
Model size
184M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train nickmuchi/deberta-v3-base-finetuned-finance-text-classification