|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- image_folder |
|
- nielsr/eurosat-demo |
|
metrics: |
|
- accuracy |
|
widget: |
|
- src: https://drive.google.com/uc?id=1trKgvkMRQ3BB0VcqnDwmieLxXhWmS8rq |
|
example_title: Annual Crop |
|
- src: https://drive.google.com/uc?id=1kWQbPNHVa_JscS0age5E0UOSBcU1bh18 |
|
example_title: Forest |
|
- src: https://drive.google.com/uc?id=12YbxF-MfpMqLPB91HuTPEgcg1xnZKhGP |
|
example_title: Herbaceous Vegetation |
|
- src: https://drive.google.com/uc?id=1NkzDiaQ1ciMDf89C8uA5zGx984bwkFCi |
|
example_title: Highway |
|
- src: https://drive.google.com/uc?id=1F6r7O0rlgzaPvY6XBpFOWUTIddEIUkxx |
|
example_title: Industrial |
|
- src: https://drive.google.com/uc?id=16zOtFHZ9E17jA9Ua4PsXrUjugSs77XKm |
|
example_title: Pasture |
|
- src: https://drive.google.com/uc?id=163tqIdoVY7WFtKQlpz_bPM9WjwbJAtd |
|
example_title: Permanent Crop |
|
- src: https://drive.google.com/uc?id=1qsX-XsrE3dMp7C7LLVa6HriaABIXuBrJ |
|
example_title: Residential |
|
- src: https://drive.google.com/uc?id=1UK2praQHbNXDnctJt58rrlQZu84lxyk |
|
example_title: River |
|
- src: https://drive.google.com/uc?id=1zVAfR7N5hXy6eq1cVOd8bXPjC1sqxVir |
|
example_title: Sea Lake |
|
base_model: microsoft/swin-tiny-patch4-window7-224 |
|
model-index: |
|
- name: swin-tiny-patch4-window7-224-finetuned-eurosat |
|
results: |
|
- task: |
|
type: image-classification |
|
name: Image Classification |
|
dataset: |
|
name: image_folder |
|
type: image_folder |
|
args: default |
|
metrics: |
|
- type: accuracy |
|
value: 0.9848148148148148 |
|
name: Accuracy |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swin-tiny-patch4-window7-224-finetuned-eurosat |
|
|
|
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0536 |
|
- Accuracy: 0.9848 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.2602 | 1.0 | 190 | 0.1310 | 0.9563 | |
|
| 0.1975 | 2.0 | 380 | 0.1063 | 0.9637 | |
|
| 0.142 | 3.0 | 570 | 0.0642 | 0.9767 | |
|
| 0.1235 | 4.0 | 760 | 0.0560 | 0.9837 | |
|
| 0.1019 | 5.0 | 950 | 0.0536 | 0.9848 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.19.2 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.2.2 |
|
- Tokenizers 0.12.1 |
|
|