File size: 8,337 Bytes
2d065f0
a382449
 
9f84789
 
a382449
 
 
2d065f0
 
 
 
 
e9763c4
 
 
 
 
 
 
 
2d065f0
 
 
0b2f58b
 
 
 
2d065f0
0b2f58b
2d065f0
0b2f58b
fbe3332
 
2d065f0
 
 
 
 
 
7139804
 
 
 
 
 
 
 
 
 
 
 
 
 
65cabea
7139804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac12800
7139804
0b2f58b
2d065f0
0b2f58b
2d065f0
d16c7eb
 
 
 
 
 
 
 
 
2d065f0
 
0b2f58b
 
 
2d065f0
 
 
 
 
 
 
0b2f58b
2d065f0
0b2f58b
 
2d065f0
 
 
 
 
0b2f58b
 
 
2d065f0
0b2f58b
 
2d065f0
 
 
0b2f58b
 
 
 
 
 
 
 
 
21b2050
13b47e2
 
 
21b2050
2d065f0
0b2f58b
2d065f0
 
 
0b2f58b
 
2d065f0
 
 
 
 
 
 
0b2f58b
 
2d065f0
 
 
0b2f58b
 
 
2d065f0
 
 
2bc2ec5
0b2f58b
 
 
 
21b2050
 
 
 
 
 
 
0b2f58b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
---
language:
- en
license: mit
library_name: transformers
metrics:
- f1
pipeline_tag: text2text-generation
---

# Model Card for Model ID

## Model Details
[![arXiv](https://img.shields.io/badge/arXiv-2404.12342-b31b1b.svg)](https://arxiv.org/abs/2404.12342)

This model represent a [Chain-of-Thought tuned verson](https://arxiv.org/pdf/2305.11255) Flan-T5 on Target Sentiment Analysis (TSA) task, using training data of [RuSentNE-2023 collection](https://github.com/dialogue-evaluation/RuSentNE-evaluation).

This model is designed for **texts written in English**. Since the original collection reprsent non-english texts, the content has been **automatically translated into English using [googletrans]**.

For the given input sentence and mentioned entity in it (*target*), this model predict author state by answering one of the following classes:
[`positive`, `negaitive`, `neutral`]

### Model Description

- **Developed by:** Reforged by [nicolay-r](https://github.com/nicolay-r), initial credits for implementation to [scofield7419](https://github.com/scofield7419)
- **Model type:** [Flan-T5](https://huggingface.co/docs/transformers/en/model_doc/flan-t5)
- **Language(s) (NLP):** English
- **License:** [Apache License 2.0](https://github.com/scofield7419/THOR-ISA/blob/main/LICENSE.txt)

### Model Sources

- **Repository:** [Reasoning-for-Sentiment-Analysis-Framework](https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework)
- **Paper:** https://arxiv.org/abs/2404.12342
- **Demo:** We have a [code on Google-Colab for launching the related model](https://colab.research.google.com/github/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/Reasoning_for_Sentiment_Analysis_Framework.ipynb)

## Uses

### Direct Use


This sequence of scripts represent a purely `torch` and `transformers` based model usage for inference.

This example is also available on [GoogleColab](https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/FlanT5_Finetuned_Model_Usage.ipynb)

Here are the **following three steps for a quick start with model application**:


1. Loading model and tokenizer

```python
import torch
from transformers import AutoTokenizer, T5ForConditionalGeneration

# Setup model path.
model_path = "nicolay-r/flan-t5-tsa-thor-base"
# Setup device.
device = "cuda:0"

model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_path)
model.to(device)
```

2. Setup ask method for generating LLM responses
```python
def ask(prompt):
  inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
  inputs.to(device)
  output = model.generate(**inputs, temperature=1)
  return tokenizer.batch_decode(output, skip_special_tokens=True)[0]
```

2. Setup Chain-of-Thought
```python
def target_sentiment_extraction(sentence, target):
  # Setup labels.
  labels_list = ['neutral', 'positive', 'negative']
  # Setup Chain-of-Thought
  step1 = f"Given the sentence {sentence}, which specific aspect of {target} is possibly mentioned?"
  aspect = ask(step1)
  step2 = f"{step1}. The mentioned aspect is about {aspect}. Based on the common sense, what is the implicit opinion towards the mentioned aspect of {target}, and why?"
  opinion = ask(step2)
  step3 = f"{step2}. The opinion towards the mentioned aspect of {target} is {opinion}. Based on such opinion, what is the sentiment polarity towards {target}?"
  emotion_state = ask(step3)
  step4 = f"{step3}. The sentiment polarity is {emotion_state}. Based on these contexts, summarize and return the sentiment polarity only, " + "such as: {}.".format(", ".join(labels_list))
  # Return the final response.
  return ask(step4)
```

Finally, you can infer model results as follows:
```python
# Input sentence.
sentence = "I would support him despite his bad behavior."
# Input target.
target = "him"
# output response
flant5_response = target_sentiment_extraction(sentence, target)
print(f"Author opinion towards `{target}` in `{sentence}` is:\n{flant5_response}")
```

The response of the model is as follows:
> Author opinion towards "him" in "I would support him despite his bad behavior." is: **positive**
 
### Downstream Use

Please refer to the [related section](https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework?tab=readme-ov-file#three-hop-chain-of-thought-thor) of the **Reasoning-for-Sentiment-Analysis** Framework

With this example it applies this model in the THoR mode to the validation data of the RuSentNE-2023 competition for evaluation.

```sh
python thor_finetune.py -m "nicolay-r/flan-t5-tsa-thor-base" -r "thor" -d "rusentne2023" -z -bs 16 -f "./config/config.yaml"
```

Following the [Google Colab Notebook]((https://colab.research.google.com/github/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/Reasoning_for_Sentiment_Analysis_Framework.ipynb)) for implementation reproduction.


### Out-of-Scope Use

This model represent a fine-tuned version of the Flan-T5 on RuSentNE-2023 dataset.
Since dataset represent three-scale output answers (`positive`, `negative`, `neutral`), 
the behavior in general might be biased to this particular task.

### Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Please proceed with the code from the related [Three-Hop-Reasoning CoT](https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework?tab=readme-ov-file#three-hop-chain-of-thought-thor) section.

Or following the related section on [Google Colab notebook](https://colab.research.google.com/github/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/Reasoning_for_Sentiment_Analysis_Framework.ipynb
)

## Training Details

### Training Data

We utilize `train` data which was **automatically translated into English using GoogleTransAPI**. 
The initial source of the texts written in Russian, is from the following repository:
https://github.com/dialogue-evaluation/RuSentNE-evaluation

The translated version on the dataset in English could be automatically downloaded via the following script:
https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/rusentne23_download.py

### Training Procedure

This model has been trained using the Three-hop-Reasoning framework, proposed in the paper: 
https://arxiv.org/abs/2305.11255

For training procedure accomplishing, the reforged version of this framework was used:
https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework

Google-colab notebook for reproduction: 
https://colab.research.google.com/github/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/Reasoning_for_Sentiment_Analysis_Framework.ipynb

**Setup:** `Flan-T5-base`, output up to 300 tokens, 16-batch size.

**GPU:** `NVidia-A100`, ~4 min/epoch, temperature 1.0, float 32

The overall training process took **5 epochs**.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/JwCP0EIe6q1VVdNrTzPQl.png)

#### Training Hyperparameters

- **Training regime:** All the configuration details were highlighted in the related
 [config](https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/config/config.yaml) file

## Evaluation

### Testing Data, Factors & Metrics

#### Testing Data

The direct link to the `test` evaluation data:
https://github.com/dialogue-evaluation/RuSentNE-evaluation/blob/main/final_data.csv

#### Metrics

For the model evaluation, two metrics were used:
1. F1_PN -- F1-measure over `positive` and `negative` classes;
2. F1_PN0 -- F1-measure over `positive`, `negative`, **and `neutral`** classes;

### Results

The test evaluation for this model [showcases](https://arxiv.org/abs/2404.12342) the F1_PN = 62.715

Below is the log of the training process that showcases the final peformance on the RuSentNE-2023 `test` set after 4 epochs (lines 5-6):
```tsv
    F1_PN  F1_PN0  default   mode
0  45.523  59.375   59.375  valid
1  62.345  70.260   70.260  valid
2  62.722  70.704   70.704  valid
3  62.721  70.671   70.671  valid
4  62.357  70.247   70.247  valid
5  60.024  68.171   68.171   test
6  60.024  68.171   68.171   test
```