whisper-small-uk / README.md
nikes64's picture
End of training
a2a8ec5 verified
|
raw
history blame
2.12 kB
metadata
language:
  - uk
license: apache-2.0
base_model: openai/whisper-small
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_1
metrics:
  - wer
model-index:
  - name: Whisper Small Ukrainian
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 16.1
          type: mozilla-foundation/common_voice_16_1
          config: uk
          split: None
          args: 'config: uk, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 26.357029928161317

Whisper Small Ukrainian

This model is a fine-tuned version of openai/whisper-small on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2744
  • Wer: 26.3570

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.278 0.47 1000 0.3330 31.8004
0.2662 0.94 2000 0.2961 29.4969
0.1403 1.42 3000 0.2796 27.3209
0.1105 1.89 4000 0.2702 26.2724
0.0719 2.36 5000 0.2744 26.3570

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2