afx-grouping-model

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0154
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 0.9060 0.7674
No log 2.0 12 0.7408 0.7674
No log 3.0 18 0.6209 0.8023
No log 4.0 24 0.5090 0.8023
No log 5.0 30 0.4159 0.8488
No log 6.0 36 0.3407 0.8837
No log 7.0 42 0.2719 0.9535
No log 8.0 48 0.2218 0.9535
No log 9.0 54 0.1801 0.9535
No log 10.0 60 0.1476 0.9535
No log 11.0 66 0.1164 0.9767
No log 12.0 72 0.0937 0.9884
No log 13.0 78 0.0723 1.0
No log 14.0 84 0.0604 1.0
No log 15.0 90 0.0485 1.0
No log 16.0 96 0.0395 1.0
No log 17.0 102 0.0339 1.0
No log 18.0 108 0.0307 1.0
No log 19.0 114 0.0262 1.0
No log 20.0 120 0.0240 1.0
No log 21.0 126 0.0215 1.0
No log 22.0 132 0.0200 1.0
No log 23.0 138 0.0189 1.0
No log 24.0 144 0.0178 1.0
No log 25.0 150 0.0170 1.0
No log 26.0 156 0.0164 1.0
No log 27.0 162 0.0160 1.0
No log 28.0 168 0.0157 1.0
No log 29.0 174 0.0155 1.0
No log 30.0 180 0.0154 1.0

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
105
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for nikinetrahutama/afx-grouping-model

Finetuned
(7684)
this model