whisper-ckm-2 / README.md
ninninz's picture
End of training
400ad82
metadata
language:
  - cr
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: whisper-large-v3-croarian
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: 'config: cr, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 64.14943295530352

whisper-large-v3-croarian

This model is a fine-tuned version of openai/whisper-large-v3 on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7755
  • Wer: 64.1494

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0169 22.73 1000 1.3990 48.7258
0.0005 45.45 2000 1.6605 56.3042
0.0002 68.18 3000 1.7494 61.4410
0.0001 90.91 4000 1.7755 64.1494

Framework versions

  • Transformers 4.36.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0