|
--- |
|
base_model: HuggingFaceTB/SmolLM-135M |
|
datasets: |
|
- LDJnr/Capybara |
|
--- |
|
|
|
###EVEN SMALLER Frankenstein of smolLm-0.13b upped to 0.15b |
|
Use this frankenbase for training. |
|
|
|
If you're here from twitter and imatient, get the trained checkpoint file. |
|
|
|
```bash |
|
biggie-smollm-checkpoint-twitter-q8_0.gguf |
|
``` |
|
|
|
```bash |
|
wget https://huggingface.co/nisten/Biggie-SmoLlm-0.15B-Base/resolve/main/biggie-smollm-checkpoint-twitter-q8_0.gguf |
|
|
|
./llama-cli -n 1024 -fa -b 512 --min-p 0.3 --top-p 0.85 -ctk q8_0 -ctv q8_0 --keep -1 -p "You are a Nasa jpl engineer teaching the user about space and cats. <|im_start|>User: How to build a city on Mars via calculating Aldrin-Cycler orbits?<im_end> /n " -m biggie-smollm-checkpoint-twitter-q8_0.gguf --temp 2 -ngl 0 -t 1 -co -cnv --reverse-prompt "Assistant:" |
|
``` |
|
|
|
Done via semi-automated continuous merging to figure out the recipe. |
|
Model is more coherent. |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6379683a81c1783a4a2ddba8/H6rv3ULQip4sYPpGGiZZe.png) |
|
|
|
```bash |
|
wget https://huggingface.co/nisten/Biggie-SmoLlm-0.15B-Base/resolve/main/Biggie_SmolLM_0.15B_Base_bf16.gguf |
|
``` |
|
```verilog |
|
llama-cli -ngl 99 -co --temp 0 -p "How to build a city on Mars via calculating Aldrin-Cycler orbits?" -m Biggie_SmolLM_0.15B |
|
_Base_bf16.gguf |
|
``` |
|
The temperature settings and min p etc need to be adjusted but even at default temp0 it was coherent for first 100 tokens. |
|
Amazing option for further training. And this is a merge of the base, not the instruct! |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6379683a81c1783a4a2ddba8/UK0_mQxy6GOHKxGKBbdhx.png) |
|
|
|
I don't understand how the f a 150mb file can talk but it can |
|
|
|
## π§ What's Really Going Down Here? |
|
|
|
We're talking about a convergence of whole bunch of stuff, more papers will be written about this: |
|
|
|
1. **Evolutionary Merging**: |
|
2. **BitNet Integration**: |
|
4. **Experimental GrokAdamW Optimizer**: |
|
|
|
## Acknodledgements |
|
|
|
Credits for optimizer go to [@cognitivecompai](https://github.com/cognitivecomputations/grokadamw) for laying the groundwork with the original GrokAdamW optimizer. |
|
|
|
## LETS TRY OUT THE EXPERIMENTAL GROKKED FINETUNE: |
|
|
|
```bash |
|
wget https://huggingface.co/nisten/Biggie-SmoLlm-0.15B-Base/resolve/main/biggie_groked_int8_q8_0.gguf |
|
``` |
|
|
|
Yes we will be talking with a 164mb file that runs at 160 tokens per second on a single cpu core |
|
## you read all of that correctly yes, 1 cpu core 160 tps https://x.com/nisten/status/1819752034305970649 |
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6379683a81c1783a4a2ddba8/nTNISjByBkN7bJZzuOvOw.png) |
|
|
|
## π run it with NO GPU and only one CPU core it with these settings |
|
```bash |
|
./llama-cli -n -1 -fa -b 512 -ctv q8_0 -ctk q8_0 -fa --min-p 0.3 --top-p 0.85 --keep -1 -p "You are a NASA JPL Scientists. Human: I want to bring my cat to mars." -m biggie_groked_int8_q8_0.gguf -co -cnv --in-prefix "<|im_start|>Human:" --reverse-prompt "Human:" -c 1024 -n 512 --temp 1.5 -ngl 0 |
|
``` |
|
|
|
|
|
## ποΈ Training Tutorial, MAKE YOUR OWN BIGGIE_SMOlLM |
|
|
|
|
|
Clone the repo like you're stealing code from the future: |
|
```bash |
|
git clone https://github.com/nisten/grokadamw |
|
cd grokadamw |
|
``` |
|
|
|
Fire up the training script and watch the magic happen: |
|
```bash |
|
python smoltrainer.py |
|
``` |
|
|
|
## π» Do it from scratch yourself |
|
Install the secret sauce (dependencies): |
|
```bash |
|
pip install torch transformers datasets tqdm |
|
``` |
|
|
|
make a file named meow.py , copy paste in this code, and then run it ```python meow.py``` |
|
|
|
```python |
|
import torch |
|
import torch.nn as nn |
|
import logging |
|
from datasets import load_dataset, Dataset |
|
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling |
|
from torch.cuda.amp import autocast |
|
import warnings |
|
from tqdm import tqdm |
|
|
|
warnings.filterwarnings("ignore", category=FutureWarning) |
|
warnings.filterwarnings("ignore", category=UserWarning) |
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') |
|
logger = logging.getLogger(__name__) |
|
|
|
MODEL_NAME = "nisten/Biggie-SmoLlm-0.15B-Base" |
|
MAX_LENGTH = 2048 |
|
BATCH_SIZE = 12 |
|
LEARNING_RATE = 2e-4 |
|
MAX_STEPS = 3000 |
|
GRADIENT_ACCUMULATION_STEPS = 2 |
|
NUM_WARMUP_STEPS = 30 |
|
OUTPUT_DIR = "./capybara_finetuned_results" |
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
|
|
class GrokAdamW(torch.optim.Optimizer): |
|
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, |
|
alpha_init=0.98, lamb=2.0, gamma=0.1, grokking_signal_fns=None, |
|
grokking_signal_decay_rate=0.1, gradient_clipping=1.0): |
|
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, |
|
alpha_init=alpha_init, lamb=lamb, gamma=gamma, |
|
grokking_signal_fns=grokking_signal_fns, |
|
grokking_signal_decay_rate=grokking_signal_decay_rate, |
|
gradient_clipping=gradient_clipping) |
|
super(GrokAdamW, self).__init__(params, defaults) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
grokking_signal = self._compute_grokking_signal(group) |
|
for i, p in enumerate(group['params']): |
|
if p.grad is None: |
|
continue |
|
grad = p.grad |
|
|
|
if group['gradient_clipping'] > 0: |
|
grad = torch.clamp(grad, -group['gradient_clipping'], group['gradient_clipping']) |
|
|
|
state = self.state[p] |
|
|
|
if len(state) == 0: |
|
state['step'] = 0 |
|
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
state['grok_ema'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
|
|
exp_avg, exp_avg_sq, grok_ema = state['exp_avg'], state['exp_avg_sq'], state['grok_ema'] |
|
beta1, beta2 = group['betas'] |
|
|
|
state['step'] += 1 |
|
|
|
layer_beta1 = beta1 * (1 - group['gamma'])**i |
|
|
|
alpha = group['alpha_init'] * torch.exp(torch.tensor(-group['grokking_signal_decay_rate'] * grokking_signal)) |
|
grok_ema.mul_(alpha).add_(grad, alpha=1 - alpha) |
|
grok_grad = grad + group['lamb'] * grok_ema |
|
|
|
exp_avg.mul_(layer_beta1).add_(grok_grad, alpha=1 - layer_beta1) |
|
exp_avg_sq.mul_(beta2).addcmul_(grok_grad, grok_grad, value=1 - beta2) |
|
|
|
denom = exp_avg_sq.sqrt().add_(group['eps']) |
|
step_size = group['lr'] |
|
|
|
if group['weight_decay'] != 0: |
|
p.data.mul_(1 - group['lr'] * group['weight_decay']) |
|
|
|
p.addcdiv_(exp_avg, denom, value=-step_size) |
|
|
|
return loss |
|
|
|
def _compute_grokking_signal(self, group): |
|
if group['grokking_signal_fns'] is None: |
|
return 0.0 |
|
|
|
signals = [] |
|
for fn in group['grokking_signal_fns']: |
|
try: |
|
signal = fn() |
|
if signal is not None: |
|
signals.append(signal) |
|
except Exception as e: |
|
logger.warning(f"Error in grokking_signal_fn: {e}. Ignoring this function.") |
|
|
|
if not signals: |
|
return 0.0 |
|
|
|
return sum(signals) / len(signals) |
|
|
|
def format_capybara_prompts(examples): |
|
texts = [] |
|
for conversation in examples['conversation']: |
|
formatted_text = "" |
|
for turn in conversation: |
|
if 'input' in turn: |
|
formatted_text += f"Human: {turn['input']}\n\n" |
|
if 'output' in turn: |
|
formatted_text += f"Assistant: {turn['output']}\n\n" |
|
texts.append(formatted_text.strip()) |
|
return {"text": texts} |
|
|
|
class CustomTrainer(Trainer): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.grokking_signal = 0.0 |
|
|
|
def compute_loss(self, model, inputs, return_outputs=False): |
|
labels = inputs.pop("labels") |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) |
|
return (loss, outputs) if return_outputs else loss |
|
|
|
def training_step(self, model, inputs): |
|
model.train() |
|
inputs = self._prepare_inputs(inputs) |
|
|
|
with autocast(dtype=torch.bfloat16): |
|
loss = self.compute_loss(model, inputs) |
|
|
|
if self.args.gradient_accumulation_steps > 1: |
|
loss = loss / self.args.gradient_accumulation_steps |
|
|
|
loss.backward() |
|
|
|
self.grokking_signal = loss.item() |
|
|
|
return loss.detach() |
|
|
|
def grokking_signal_fn(): |
|
return trainer.grokking_signal |
|
|
|
def main(): |
|
logger.info(f"π Initializing {MODEL_NAME} finetuning with GrokAdamW") |
|
|
|
try: |
|
config = AutoConfig.from_pretrained(MODEL_NAME) |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) |
|
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16) |
|
except Exception as e: |
|
logger.error(f"β Failed to load model or tokenizer: {str(e)}") |
|
return |
|
|
|
if tokenizer.pad_token is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
model.config.pad_token_id = model.config.eos_token_id |
|
|
|
logger.info("π Loading Capybara dataset") |
|
try: |
|
capybara_dataset = load_dataset("LDJnr/Capybara", split="train") |
|
capybara_dataset = capybara_dataset.map(format_capybara_prompts, batched=True, remove_columns=capybara_dataset.column_names) |
|
except Exception as e: |
|
logger.error(f"β Failed to load Capybara dataset: {str(e)}") |
|
return |
|
|
|
logger.info(f"π Capybara dataset size: {len(capybara_dataset)}") |
|
|
|
def tokenize_function(examples): |
|
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=MAX_LENGTH) |
|
|
|
logger.info("π’ Tokenizing dataset") |
|
tokenized_dataset = capybara_dataset.map(tokenize_function, batched=True, remove_columns=capybara_dataset.column_names) |
|
|
|
logger.info("ποΈ Setting up the training arguments") |
|
training_args = TrainingArguments( |
|
output_dir=OUTPUT_DIR, |
|
num_train_epochs=3, |
|
per_device_train_batch_size=BATCH_SIZE, |
|
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS, |
|
learning_rate=LEARNING_RATE, |
|
weight_decay=0.01, |
|
bf16=True, |
|
logging_steps=10, |
|
save_steps=300, |
|
save_total_limit=10, |
|
dataloader_num_workers=4, |
|
warmup_steps=NUM_WARMUP_STEPS, |
|
gradient_checkpointing=True, |
|
evaluation_strategy="steps", |
|
eval_steps=300, |
|
max_steps=MAX_STEPS, |
|
fp16=False, |
|
optim="adamw_hf", |
|
lr_scheduler_type="cosine", |
|
load_best_model_at_end=True, |
|
metric_for_best_model="loss", |
|
greater_is_better=False, |
|
) |
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) |
|
|
|
optimizer = GrokAdamW( |
|
model.parameters(), |
|
lr=LEARNING_RATE, |
|
betas=(0.9, 0.999), |
|
eps=1e-8, |
|
weight_decay=0.01, |
|
alpha_init=0.98, |
|
lamb=2.0, |
|
gamma=0.1, |
|
grokking_signal_fns=[grokking_signal_fn], |
|
grokking_signal_decay_rate=0.1, |
|
gradient_clipping=1.0 |
|
) |
|
|
|
logger.info("πββοΈ Initializing Trainer with GrokAdamW") |
|
global trainer |
|
trainer = CustomTrainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=tokenized_dataset, |
|
eval_dataset=tokenized_dataset.select(range(min(1000, len(tokenized_dataset)))), |
|
data_collator=data_collator, |
|
optimizers=(optimizer, None), |
|
) |
|
|
|
logger.info("π₯ Starting the training with GrokAdamW") |
|
try: |
|
trainer.train() |
|
except Exception as e: |
|
logger.error(f"β Training failed: {str(e)}") |
|
return |
|
|
|
logger.info("πΎ Saving the model") |
|
try: |
|
trainer.save_model(OUTPUT_DIR) |
|
except Exception as e: |
|
logger.error(f"β Failed to save model: {str(e)}") |
|
|
|
logger.info("π Finetuning with GrokAdamW completed!") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
``` |
|
Now go forth and train, accelerate that code ( you'll need about 22Gb of VRAM, change to batch size 1 for 8Gb) π§ͺπ |