Edit model card

πŸ”Ž KoE5

Introducing KoE5, a model with advanced retrieval abilities. It has shown remarkable performance in Korean text retrieval, speficially overwhelming most multilingual embedding models.
To our knowledge, It is one of the best publicly opened Korean retrieval models.

For details, visit the KoE5 repository


Model Description

This is the model card of a πŸ€— transformers model that has been pushed on the Hub.

Example code

Install Dependencies

First install the Sentence Transformers library:

pip install -U sentence-transformers

Python code

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the πŸ€— Hub
model = SentenceTransformer("nlpai-lab/KoE5")

# Run inference
sentences = [
    'query: ν—Œλ²•κ³Ό 법원쑰직법은 μ–΄λ–€ 방식을 톡해 기본ꢌ 보μž₯ λ“±μ˜ λ‹€μ–‘ν•œ 법적 λͺ¨μƒ‰μ„ κ°€λŠ₯ν•˜κ²Œ ν–ˆμ–΄',
    'passage: 4. μ‹œμ‚¬μ κ³Ό κ°œμ„ λ°©ν–₯ μ•žμ„œ μ‚΄νŽ΄λ³Έ 바와 같이 우리 ν—Œλ²•κ³Ό r법원쑰직 법」은 λŒ€λ²•μ› ꡬ성을 λ‹€μ–‘ν™”ν•˜μ—¬ 기본ꢌ 보μž₯κ³Ό 민주주의 확립에 μžˆμ–΄ 닀각적인 법적 λͺ¨μƒ‰μ„ κ°€λŠ₯ν•˜κ²Œ ν•˜λŠ” 것을 κ·Όλ³Έ κ·œλ²”μœΌλ‘œ ν•˜κ³  μžˆλ‹€. λ”μš±μ΄ ν•©μ˜μ²΄λ‘œμ„œμ˜ λŒ€λ²•μ› 원리λ₯Ό μ±„νƒν•˜κ³  μžˆλŠ” 것 μ—­μ‹œ κ·Έ κ΅¬μ„±μ˜ 닀양성을 μš”μ²­ν•˜λŠ” κ²ƒμœΌλ‘œ ν•΄μ„λœλ‹€. 이와 같은 κ΄€μ μ—μ„œ λ³Ό λ•Œ ν˜„μ§ 법원μž₯κΈ‰ κ³ μœ„λ²•κ΄€μ„ μ€‘μ‹¬μœΌλ‘œ λŒ€λ²•μ›μ„ κ΅¬μ„±ν•˜λŠ” 관행은 κ°œμ„ ν•  ν•„μš”κ°€ μžˆλŠ” κ²ƒμœΌλ‘œ 보인닀.',
    'passage: β–‘ μ—°λ°©ν—Œλ²•μž¬νŒμ†ŒλŠ” 2001λ…„ 1μ›” 24일 5:3의 λ‹€μˆ˜κ²¬ν•΄λ‘œ γ€Œλ²•μ›μ‘°μ§λ²•γ€ 제169μ‘° 제2문이 ν—Œλ²•μ— ν•©μΉ˜λœλ‹€λŠ” νŒκ²°μ„ λ‚΄λ ΈμŒ β—‹ 5인의 λ‹€μˆ˜ μž¬νŒκ΄€μ€ μ†Œμ†‘κ΄€κ³„μΈμ˜ 인격ꢌ 보호, κ³΅μ •ν•œ 절차의 보μž₯κ³Ό 방해받지 μ•ŠλŠ” 법과 진싀 발견 등을 근거둜 ν•˜μ—¬ ν…”λ ˆλΉ„μ „ μ΄¬μ˜μ— λŒ€ν•œ μ ˆλŒ€μ μΈ κΈˆμ§€λ₯Ό ν—Œλ²•μ— ν•©μΉ˜ν•˜λŠ” κ²ƒμœΌλ‘œ λ³΄μ•˜μŒ β—‹ κ·ΈλŸ¬λ‚˜ λ‚˜λ¨Έμ§€ 3인의 μž¬νŒκ΄€μ€ ν–‰μ •λ²•μ›μ˜ μ†Œμ†‘μ ˆμ°¨λŠ” νŠΉλ³„ν•œ 인격ꢌ 보호의 이읡도 μ—†μœΌλ©°, ν…”λ ˆλΉ„μ „ 곡개주의둜 인해 법과 진싀 발견의 과정이 μ–Έμ œλ‚˜ μœ„νƒœλ‘­κ²Œ λ˜λŠ” 것은 μ•„λ‹ˆλΌλ©΄μ„œ λ°˜λŒ€μ˜κ²¬μ„ μ œμ‹œν•¨ β—‹ μ™œλƒν•˜λ©΄ ν–‰μ •λ²•μ›μ˜ μ†Œμ†‘μ ˆμ°¨μ—μ„œλŠ” μ†Œμ†‘λ‹Ήμ‚¬μžκ°€ 개인적으둜 직접 심리에 μ°Έμ„ν•˜κΈ°λ³΄λ‹€λŠ” λ³€ν˜Έμ‚¬κ°€ μ°Έμ„ν•˜λŠ” κ²½μš°κ°€ 많으며, μ‹¬λ¦¬λŒ€μƒλ„ μ‚¬μ‹€λ¬Έμ œκ°€ μ•„λ‹Œ 법λ₯ λ¬Έμ œκ°€ λŒ€λΆ€λΆ„μ΄κΈ° λ•Œλ¬Έμ΄λΌλŠ” κ²ƒμž„ β–‘ ν•œνŽΈ, μ—°λ°©ν—Œλ²•μž¬νŒμ†ŒλŠ” γ€Œμ—°λ°©ν—Œλ²•μž¬νŒμ†Œλ²•γ€(Bundesverfassungsgerichtsgesetz: BVerfGG) 제17a쑰에 따라 μ œν•œμ μ΄λ‚˜λ§ˆ μž¬νŒμ— λŒ€ν•œ 방솑을 ν—ˆμš©ν•˜κ³  있음 β—‹ γ€Œμ—°λ°©ν—Œλ²•μž¬νŒμ†Œλ²•γ€ 제17μ‘°μ—μ„œ γ€Œλ²•μ›μ‘°μ§λ²•γ€ 제14절 내지 제16절의 κ·œμ •μ„ μ€€μš©ν•˜λ„λ‘ ν•˜κ³  μžˆμ§€λ§Œ, λ…ΉμŒμ΄λ‚˜ μ΄¬μ˜μ„ ν†΅ν•œ μž¬νŒκ³΅κ°œμ™€ κ΄€λ ¨ν•˜μ—¬μ„œλŠ” γ€Œλ²•μ›μ‘°μ§λ²•γ€κ³Ό λ‹€λ₯Έ λ‚΄μš©μ„ κ·œμ •ν•˜κ³  있음',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.6721, 0.3897],
#        [0.6721, 1.0000, 0.3740],
#        [0.3897, 0.3740, 1.0000]])

Training Details

Training Data

  • ko-triplet-v1.0
  • Korean query-document-hard_negative data pair (open data)
  • About 700000+ examples used totally

Training Procedure

Evaluation

Metrics

  • NDCG@1, F1@1, NDCG@3, F1@3

Benchmark Datasets

  • Ko-strategyQA
  • AutoRAG-benchmark
  • PublicHealthQA

Results

  • By datasets
  • Average

FAQ

- Do I need to add the prefix "query: " and "passage: " to input texts?

Yes, this is how the model is trained, otherwise you will see a performance degradation.

Here are some rules of thumb:

  • Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval.

  • Use "query: " prefix for symmetric tasks such as semantic similarity, bitext mining, paraphrase retrieval.

  • Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering.

Citation

If you find our paper or models helpful, please consider cite as follows:

@misc{KoE5,
  author = {NLP & AI Lab and Human-Inspired AI research},
  title = {KoE5: A New Dataset and Model for Improving Korean Embedding Performance},
  year = {2024},
  publisher = {Youngjoon Jang, Junyoung Son, Taemin Lee},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/nlpai-lab/KoE5}},
}

Limitations

Long texts will be truncated to at most 512 tokens.

Downloads last month
12,686
Safetensors
Model size
560M params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nlpai-lab/KoE5

Finetuned
(71)
this model
Finetunes
1 model

Dataset used to train nlpai-lab/KoE5