Edit model card

dpr-question_encoder_bert_uncased_L-2_H-128_A-2

This model(google/bert_uncased_L-2_H-128_A-2) was trained from scratch on training data: data.retriever.nq-adv-hn-train(facebookresearch/DPR). It achieves the following results on the evaluation set:

Evaluation data

evaluation dataset: facebook-dpr-dev-dataset from official DPR github

model_name data_name num of queries num of passages R@10 R@20 R@50 R@100 R@100
nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2(our) nq-dev dataset 6445 199795 60.53% 68.28% 76.07% 80.98% 91.45%
nlpconnect/dpr-ctx_encoder_bert_uncased_L-12_H-128_A-2(our) nq-dev dataset 6445 199795 65.43% 71.99% 79.03% 83.24% 92.11%
*facebook/dpr-ctx_encoder-single-nq-base(hf/fb) nq-dev dataset 6445 199795 40.94% 49.27% 59.05% 66.00% 82.00%

evaluation dataset: UKPLab/beir test data but we have used first 2lac passage only.

model_name data_name num of queries num of passages R@10 R@20 R@50 R@100 R@100
nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2(our) nq-test dataset 3452 200001 49.68% 59.06% 69.40% 75.75% 89.28%
nlpconnect/dpr-ctx_encoder_bert_uncased_L-12_H-128_A-2(our) nq-test dataset 3452 200001 51.62% 61.09% 70.10% 76.07% 88.70%
*facebook/dpr-ctx_encoder-single-nq-base(hf/fb) nq-test dataset 3452 200001 32.93% 43.74% 56.95% 66.30% 83.92%

Note: * means we have evaluated on same eval dataset.

Usage (HuggingFace Transformers)


passage_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-12_H-128_A-2")
query_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-12_H-128_A-2")

p_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-12_H-128_A-2")
q_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-12_H-128_A-2")

def get_title_text_combined(passage_dicts):
    res = []
    for p in passage_dicts:
        res.append(tuple((p['title'], p['text'])))
    return res
    
processed_passages = get_title_text_combined(passage_dicts)

def extracted_passage_embeddings(processed_passages, model_config):
    passage_inputs = tokenizer.batch_encode_plus(
                    processed_passages,
                    add_special_tokens=True,
                    truncation=True,
                    padding="max_length",
                    max_length=model_config.passage_max_seq_len,
                    return_token_type_ids=True
                )
    passage_embeddings = passage_encoder.predict([np.array(passage_inputs['input_ids']), 
                                                np.array(passage_inputs['attention_mask']), 
                                                np.array(passage_inputs['token_type_ids'])], 
                                                batch_size=512, 
                                                verbose=1)
    return passage_embeddings
    
passage_embeddings = extracted_passage_embeddings(processed_passages, model_config)


def extracted_query_embeddings(queries, model_config):
    query_inputs = tokenizer.batch_encode_plus(
                    queries,
                    add_special_tokens=True,
                    truncation=True,
                    padding="max_length",
                    max_length=model_config.query_max_seq_len,
                    return_token_type_ids=True
                )
    query_embeddings = query_encoder.predict([np.array(query_inputs['input_ids']), 
                                                np.array(query_inputs['attention_mask']), 
                                                np.array(query_inputs['token_type_ids'])], 
                                                batch_size=512, 
                                                verbose=1)
    return query_embeddings
    

query_embeddings = extracted_query_embeddings(queries, model_config)

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: None
  • training_precision: float32

Framework versions

  • Transformers 4.15.0
  • TensorFlow 2.7.0
  • Tokenizers 0.10.3
Downloads last month
63
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2 13