|
--- |
|
tags: |
|
- image-to-text |
|
- image-captioning |
|
license: apache-2.0 |
|
widget: |
|
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg |
|
example_title: Savanna |
|
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg |
|
example_title: Football Match |
|
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg |
|
example_title: Airport |
|
--- |
|
|
|
# nlpconnect/vit-gpt2-image-captioning |
|
|
|
This is an image captioning model trained by @ydshieh in [flax ](https://github.com/huggingface/transformers/tree/main/examples/flax/image-captioning) this is pytorch version of [this](https://huggingface.co/ydshieh/vit-gpt2-coco-en-ckpts). |
|
|
|
|
|
# The Illustrated Image Captioning using transformers |
|
|
|
![](https://ankur3107.github.io/assets/images/vision-encoder-decoder.png) |
|
|
|
* https://ankur3107.github.io/blogs/the-illustrated-image-captioning-using-transformers/ |
|
|
|
|
|
# Sample running code |
|
|
|
```python |
|
|
|
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer |
|
import torch |
|
from PIL import Image |
|
|
|
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") |
|
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") |
|
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
|
|
|
|
|
|
max_length = 16 |
|
num_beams = 4 |
|
gen_kwargs = {"max_length": max_length, "num_beams": num_beams} |
|
def predict_step(image_paths): |
|
images = [] |
|
for image_path in image_paths: |
|
i_image = Image.open(image_path) |
|
if i_image.mode != "RGB": |
|
i_image = i_image.convert(mode="RGB") |
|
|
|
images.append(i_image) |
|
|
|
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values |
|
pixel_values = pixel_values.to(device) |
|
|
|
output_ids = model.generate(pixel_values, **gen_kwargs) |
|
|
|
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) |
|
preds = [pred.strip() for pred in preds] |
|
return preds |
|
|
|
|
|
predict_step(['doctor.e16ba4e4.jpg']) # ['a woman in a hospital bed with a woman in a hospital bed'] |
|
|
|
``` |
|
|
|
# Sample running code using transformers pipeline |
|
|
|
```python |
|
|
|
from transformers import pipeline |
|
|
|
image_to_text = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning") |
|
|
|
image_to_text("https://ankur3107.github.io/assets/images/image-captioning-example.png") |
|
|
|
# [{'generated_text': 'a soccer game with a player jumping to catch the ball '}] |
|
|
|
|
|
``` |
|
|
|
|
|
# Contact for any help |
|
* https://huggingface.co/ankur310794 |
|
* https://twitter.com/ankur310794 |
|
* http://github.com/ankur3107 |
|
* https://www.linkedin.com/in/ankur310794 |