metadata
tags: autotrain
language: unk
widget:
- text: I love AutoTrain 🤗
datasets:
- EXOP/autotrain-data-exop-msc-flat-categories-multilingual
co2_eq_emissions: 652.3729662301374
Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 1147942216
- CO2 Emissions (in grams): 652.3729662301374
Validation Metrics
- Loss: 0.4508252441883087
- Accuracy: 0.8882102517882141
- Macro F1: 0.7681095738330185
- Micro F1: 0.8882102517882141
- Weighted F1: 0.8873062298114072
- Macro Precision: 0.8125021386404774
- Micro Precision: 0.8882102517882141
- Weighted Precision: 0.8875709606885154
- Macro Recall: 0.7429489567097202
- Micro Recall: 0.8882102517882141
- Weighted Recall: 0.8882102517882141
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/EXOP/autotrain-exop-msc-flat-categories-multilingual-1147942216
Or Python API:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("EXOP/autotrain-exop-msc-flat-categories-multilingual-1147942216", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("EXOP/autotrain-exop-msc-flat-categories-multilingual-1147942216", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)