nmitchko's picture
Initial Commit -- Missing Adapter
fc4978b
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from collections import defaultdict
import copy
import json
import os
from os.path import exists, join, isdir
from dataclasses import dataclass, field
import sys
from typing import Optional, Dict, Sequence
import numpy as np
from tqdm import tqdm
import logging
import bitsandbytes as bnb
import pandas as pd
import importlib
from packaging import version
from packaging.version import parse
import torch
import transformers
from torch.nn.utils.rnn import pad_sequence
import argparse
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
set_seed,
Seq2SeqTrainer,
BitsAndBytesConfig,
LlamaTokenizer
)
from datasets import load_dataset, Dataset
import evaluate
from peft import (
prepare_model_for_kbit_training,
LoraConfig,
get_peft_model,
PeftModel
)
from peft.tuners.lora import LoraLayer
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
def is_ipex_available():
def get_major_and_minor_from_version(full_version):
return str(version.parse(full_version).major) + "." + str(version.parse(full_version).minor)
_torch_version = importlib.metadata.version("torch")
if importlib.util.find_spec("intel_extension_for_pytorch") is None:
return False
_ipex_version = "N/A"
try:
_ipex_version = importlib.metadata.version("intel_extension_for_pytorch")
except importlib.metadata.PackageNotFoundError:
return False
torch_major_and_minor = get_major_and_minor_from_version(_torch_version)
ipex_major_and_minor = get_major_and_minor_from_version(_ipex_version)
if torch_major_and_minor != ipex_major_and_minor:
warnings.warn(
f"Intel Extension for PyTorch {ipex_major_and_minor} needs to work with PyTorch {ipex_major_and_minor}.*,"
f" but PyTorch {_torch_version} is found. Please switch to the matching version and run again."
)
return False
return True
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
logger = logging.getLogger(__name__)
IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN = "[PAD]"
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(
default="EleutherAI/pythia-12b"
)
trust_remote_code: Optional[bool] = field(
default=False,
metadata={"help": "Enable unpickling of arbitrary code in AutoModelForCausalLM#from_pretrained."}
)
use_auth_token: Optional[bool] = field(
default=False,
metadata={"help": "Enables using Huggingface auth token from Git Credentials."}
)
@dataclass
class DataArguments:
eval_dataset_size: int = field(
default=1024, metadata={"help": "Size of validation dataset."}
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
source_max_len: int = field(
default=1024,
metadata={"help": "Maximum source sequence length. Sequences will be right padded (and possibly truncated)."},
)
target_max_len: int = field(
default=256,
metadata={"help": "Maximum target sequence length. Sequences will be right padded (and possibly truncated)."},
)
dataset: str = field(
default='alpaca',
metadata={"help": "Which dataset to finetune on. See datamodule for options."}
)
dataset_format: Optional[str] = field(
default=None,
metadata={"help": "Which dataset format is used. [alpaca|chip2|self-instruct|hh-rlhf]"}
)
@dataclass
class TrainingArguments(transformers.Seq2SeqTrainingArguments):
cache_dir: Optional[str] = field(
default=None
)
train_on_source: Optional[bool] = field(
default=False,
metadata={"help": "Whether to train on the input in addition to the target text."}
)
mmlu_split: Optional[str] = field(
default='eval',
metadata={"help": "The MMLU split to run on"}
)
mmlu_dataset: Optional[str] = field(
default='mmlu-fs',
metadata={"help": "MMLU dataset to use: options are `mmlu-zs` for zero-shot or `mmlu-fs` for few shot."}
)
do_mmlu_eval: Optional[bool] = field(
default=False,
metadata={"help": "Whether to run the MMLU evaluation."}
)
max_mmlu_samples: Optional[int] = field(
default=None,
metadata={"help": "If set, only evaluates on `max_mmlu_samples` of the MMMLU dataset."}
)
mmlu_source_max_len: int = field(
default=2048,
metadata={"help": "Maximum source sequence length for mmlu."}
)
full_finetune: bool = field(
default=False,
metadata={"help": "Finetune the entire model without adapters."}
)
adam8bit: bool = field(
default=False,
metadata={"help": "Use 8-bit adam."}
)
double_quant: bool = field(
default=True,
metadata={"help": "Compress the quantization statistics through double quantization."}
)
quant_type: str = field(
default="nf4",
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}
)
bits: int = field(
default=4,
metadata={"help": "How many bits to use."}
)
lora_r: int = field(
default=64,
metadata={"help": "Lora R dimension."}
)
lora_alpha: float = field(
default=16,
metadata={"help": " Lora alpha."}
)
lora_dropout: float = field(
default=0.0,
metadata={"help":"Lora dropout."}
)
max_memory_MB: int = field(
default=80000,
metadata={"help": "Free memory per gpu."}
)
report_to: str = field(
default='none',
metadata={"help": "To use wandb or something else for reporting."}
)
output_dir: str = field(default='./output', metadata={"help": 'The output dir for logs and checkpoints'})
optim: str = field(default='paged_adamw_32bit', metadata={"help": 'The optimizer to be used'})
per_device_train_batch_size: int = field(default=1, metadata={"help": 'The training batch size per GPU. Increase for better speed.'})
gradient_accumulation_steps: int = field(default=16, metadata={"help": 'How many gradients to accumulate before to perform an optimizer step'})
max_steps: int = field(default=10000, metadata={"help": 'How many optimizer update steps to take'})
weight_decay: float = field(default=0.0, metadata={"help": 'The L2 weight decay rate of AdamW'}) # use lora dropout instead for regularization if needed
learning_rate: float = field(default=0.0002, metadata={"help": 'The learnign rate'})
remove_unused_columns: bool = field(default=False, metadata={"help": 'Removed unused columns. Needed to make this codebase work.'})
max_grad_norm: float = field(default=0.3, metadata={"help": 'Gradient clipping max norm. This is tuned and works well for all models tested.'})
gradient_checkpointing: bool = field(default=True, metadata={"help": 'Use gradient checkpointing. You want to use this.'})
do_train: bool = field(default=True, metadata={"help": 'To train or not to train, that is the question?'})
lr_scheduler_type: str = field(default='constant', metadata={"help": 'Learning rate schedule. Constant a bit better than cosine, and has advantage for analysis'})
warmup_ratio: float = field(default=0.03, metadata={"help": 'Fraction of steps to do a warmup for'})
logging_steps: int = field(default=10, metadata={"help": 'The frequency of update steps after which to log the loss'})
group_by_length: bool = field(default=True, metadata={"help": 'Group sequences into batches with same length. Saves memory and speeds up training considerably.'})
save_strategy: str = field(default='steps', metadata={"help": 'When to save checkpoints'})
save_steps: int = field(default=250, metadata={"help": 'How often to save a model'})
save_total_limit: int = field(default=40, metadata={"help": 'How many checkpoints to save before the oldest is overwritten'})
sharded_ddp: bool = field(default=False)
ddp_timeout: int = field(default=7200)
ddp_find_unused_parameters: bool = field(default=False)
dataloader_num_workers: int = field(default=3)
@dataclass
class GenerationArguments:
# For more hyperparameters check:
# https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig
# Length arguments
max_new_tokens: Optional[int] = field(
default=256,
metadata={"help": "Maximum number of new tokens to be generated in evaluation or prediction loops"
"if predict_with_generate is set."}
)
min_new_tokens : Optional[int] = field(
default=None,
metadata={"help": "Minimum number of new tokens to generate."}
)
# Generation strategy
do_sample: Optional[bool] = field(default=False)
num_beams: Optional[int] = field(default=1)
num_beam_groups: Optional[int] = field(default=1)
penalty_alpha: Optional[float] = field(default=None)
use_cache: Optional[bool] = field(default=True)
# Hyperparameters for logit manipulation
temperature: Optional[float] = field(default=1.0)
top_k: Optional[int] = field(default=50)
top_p: Optional[float] = field(default=1.0)
typical_p: Optional[float] = field(default=1.0)
diversity_penalty: Optional[float] = field(default=0.0)
repetition_penalty: Optional[float] = field(default=1.0)
length_penalty: Optional[float] = field(default=1.0)
no_repeat_ngram_size: Optional[int] = field(default=0)
def find_all_linear_names(args, model):
cls = bnb.nn.Linear4bit if args.bits == 4 else (bnb.nn.Linear8bitLt if args.bits == 8 else torch.nn.Linear)
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'lm_head' in lora_module_names: # needed for 16-bit
lora_module_names.remove('lm_head')
return list(lora_module_names)
class SavePeftModelCallback(transformers.TrainerCallback):
def save_model(self, args, state, kwargs):
print('Saving PEFT checkpoint...')
if state.best_model_checkpoint is not None:
checkpoint_folder = os.path.join(state.best_model_checkpoint, "adapter_model")
else:
checkpoint_folder = os.path.join(args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}")
peft_model_path = os.path.join(checkpoint_folder, "adapter_model")
kwargs["model"].save_pretrained(peft_model_path)
pytorch_model_path = os.path.join(checkpoint_folder, "pytorch_model.bin")
if os.path.exists(pytorch_model_path):
os.remove(pytorch_model_path)
def on_save(self, args, state, control, **kwargs):
self.save_model(args, state, kwargs)
return control
def on_train_end(self, args, state, control, **kwargs):
def touch(fname, times=None):
with open(fname, 'a'):
os.utime(fname, times)
touch(join(args.output_dir, 'completed'))
self.save_model(args, state, kwargs)
def get_accelerate_model(args, checkpoint_dir):
if torch.cuda.is_available():
n_gpus = torch.cuda.device_count()
if is_ipex_available() and torch.xpu.is_available():
n_gpus = torch.xpu.device_count()
max_memory = f'{args.max_memory_MB}MB'
max_memory = {i: max_memory for i in range(n_gpus)}
device_map = "auto"
# if we are in a distributed setting, we need to set the device map and max memory per device
if os.environ.get('LOCAL_RANK') is not None:
local_rank = int(os.environ.get('LOCAL_RANK', '0'))
device_map = {'': local_rank}
max_memory = {'': max_memory[local_rank]}
if args.full_finetune: assert args.bits in [16, 32]
print(f'loading base model {args.model_name_or_path}...')
compute_dtype = (torch.float16 if args.fp16 else (torch.bfloat16 if args.bf16 else torch.float32))
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
cache_dir=args.cache_dir,
load_in_4bit=args.bits == 4,
load_in_8bit=args.bits == 8,
device_map=device_map,
max_memory=max_memory,
quantization_config=BitsAndBytesConfig(
load_in_4bit=args.bits == 4,
load_in_8bit=args.bits == 8,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=args.double_quant,
bnb_4bit_quant_type=args.quant_type,
),
torch_dtype=(torch.float32 if args.fp16 else (torch.bfloat16 if args.bf16 else torch.float32)),
trust_remote_code=args.trust_remote_code,
use_auth_token=args.use_auth_token
)
if compute_dtype == torch.float16 and args.bits == 4:
if torch.cuda.is_bf16_supported():
print('='*80)
print('Your GPU supports bfloat16, you can accelerate training with the argument --bf16')
print('='*80)
if compute_dtype == torch.float16 and (is_ipex_available() and torch.xpu.is_available()):
compute_dtype = torch.bfloat16
print('Intel XPU does not support float16 yet, so switching to bfloat16')
setattr(model, 'model_parallel', True)
setattr(model, 'is_parallelizable', True)
model.config.torch_dtype=(torch.float32 if args.fp16 else (torch.bfloat16 if args.bf16 else torch.float32))
# Tokenizer
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path,
cache_dir=args.cache_dir,
padding_side="right",
use_fast=False, # Fast tokenizer giving issues.
tokenizer_type='llama' if 'llama' in args.model_name_or_path else None, # Needed for HF name change
legacy=False,
trust_remote_code=args.trust_remote_code,
use_auth_token=args.use_auth_token,
)
#if tokenizer._pad_token is None:
# smart_tokenizer_and_embedding_resize(
# special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
# tokenizer=tokenizer,
# model=model,
# )
if 'llama' in args.model_name_or_path or isinstance(tokenizer, LlamaTokenizer):
# LLaMA tokenizer may not have correct special tokens set.
# Check and add them if missing to prevent them from being parsed into different tokens.
# Note that these are present in the vocabulary.
# Note also that `model.config.pad_token_id` is 0 which corresponds to `<unk>` token.
print('Adding special tokens.')
tokenizer.add_special_tokens({
"eos_token": tokenizer.convert_ids_to_tokens(model.config.eos_token_id),
"bos_token": tokenizer.convert_ids_to_tokens(model.config.bos_token_id),
"pad_token": tokenizer.convert_ids_to_tokens(0)
# "unk_token": tokenizer.convert_ids_to_tokens(
# model.config.pad_token_id if model.config.pad_token_id != -1 else tokenizer.pad_token_id
# ),
})
if not args.full_finetune:
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=args.gradient_checkpointing)
if not args.full_finetune:
if checkpoint_dir is not None:
print("Loading adapters from checkpoint.")
model = PeftModel.from_pretrained(model, join(checkpoint_dir, 'adapter_model'), is_trainable=True)
else:
print(f'adding LoRA modules...')
modules = find_all_linear_names(args, model)
config = LoraConfig(
r=args.lora_r,
lora_alpha=args.lora_alpha,
target_modules=modules,
lora_dropout=args.lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
for name, module in model.named_modules():
if isinstance(module, LoraLayer):
if args.bf16:
module = module.to(torch.bfloat16)
if 'norm' in name:
module = module.to(torch.float32)
if 'lm_head' in name or 'embed_tokens' in name:
if hasattr(module, 'weight'):
if args.bf16 and module.weight.dtype == torch.float32:
module = module.to(torch.bfloat16)
return model, tokenizer
def print_trainable_parameters(args, model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
if args.bits == 4: trainable_params /= 2
print(
f"trainable params: {trainable_params} || "
f"all params: {all_param} || "
f"trainable: {100 * trainable_params / all_param}"
)
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings_data = model.get_input_embeddings().weight.data
output_embeddings_data = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings_data[:-num_new_tokens].mean(dim=0, keepdim=True)
output_embeddings_avg = output_embeddings_data[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings_data[-num_new_tokens:] = input_embeddings_avg
output_embeddings_data[-num_new_tokens:] = output_embeddings_avg
@dataclass
class DataCollatorForCausalLM(object):
tokenizer: transformers.PreTrainedTokenizer
source_max_len: int
target_max_len: int
train_on_source: bool
predict_with_generate: bool
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
# Extract elements
sources = [f"{self.tokenizer.bos_token}{example['input']}" for example in instances]
targets = [f"{example['output']}{self.tokenizer.eos_token}" for example in instances]
# Tokenize
tokenized_sources_with_prompt = self.tokenizer(
sources,
max_length=self.source_max_len,
truncation=True,
add_special_tokens=False,
)
tokenized_targets = self.tokenizer(
targets,
max_length=self.target_max_len,
truncation=True,
add_special_tokens=False,
)
# Build the input and labels for causal LM
input_ids = []
labels = []
for tokenized_source, tokenized_target in zip(
tokenized_sources_with_prompt['input_ids'],
tokenized_targets['input_ids']
):
if not self.predict_with_generate:
input_ids.append(torch.tensor(tokenized_source + tokenized_target))
if not self.train_on_source:
labels.append(
torch.tensor([IGNORE_INDEX for _ in range(len(tokenized_source))] + copy.deepcopy(tokenized_target))
)
else:
labels.append(torch.tensor(copy.deepcopy(tokenized_source + tokenized_target)))
else:
input_ids.append(torch.tensor(tokenized_source))
# Apply padding
input_ids = pad_sequence(input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id)
labels = pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) if not self.predict_with_generate else None
data_dict = {
'input_ids': input_ids,
'attention_mask':input_ids.ne(self.tokenizer.pad_token_id),
}
if labels is not None:
data_dict['labels'] = labels
return data_dict
def extract_unnatural_instructions_data(examples, extract_reformulations=False):
out = {
'input': [],
'output': [],
}
for example_instances in examples['instances']:
for instance in example_instances:
out['input'].append(instance['instruction_with_input'])
out['output'].append(instance['output'])
if extract_reformulations:
for example_reformulations in examples['reformulations']:
if example_reformulations is not None:
for instance in example_reformulations:
out['input'].append(instance['instruction_with_input'])
out['output'].append(instance['output'])
return out
ALPACA_PROMPT_DICT = {
"prompt_input": (
"Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response: "
),
"prompt_no_input": (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Response: "
),
}
def extract_alpaca_dataset(example):
if example.get("input", "") != "":
prompt_format = ALPACA_PROMPT_DICT["prompt_input"]
else:
prompt_format = ALPACA_PROMPT_DICT["prompt_no_input"]
return {'input': prompt_format.format(**example)}
def local_dataset(dataset_name):
if dataset_name.endswith('.json') or dataset_name.endswith('.jsonl'):
full_dataset = Dataset.from_json(path_or_paths=dataset_name)
elif dataset_name.endswith('.csv'):
full_dataset = Dataset.from_pandas(pd.read_csv(dataset_name))
elif dataset_name.endswith('.tsv'):
full_dataset = Dataset.from_pandas(pd.read_csv(dataset_name, delimiter='\t'))
else:
raise ValueError(f"Unsupported dataset format: {dataset_name}")
split_dataset = full_dataset.train_test_split(test_size=0.1)
return split_dataset
def make_data_module(tokenizer: transformers.PreTrainedTokenizer, args) -> Dict:
"""
Make dataset and collator for supervised fine-tuning.
Datasets are expected to have the following columns: { `input`, `output` }
Available datasets to be selected with `dataset` argument:
- alpaca, 52002 examples
- alpaca cleaned, 51942 examples
- chip2 (OIG), 210289 examples
- self-instruct, 82612 examples
- hh-rlhf (Anthropic), 160800 examples
- longform, 23.7k examples
- oasst1 (OpenAssistant) primary message tree only, 9,846 examples
Coming soon:
- unnatural instructions core, 66010 examples
- unnatural instructions full, 240670 examples
- alpaca-gpt4, 52002 examples
- unnatural-instructions-gpt4, 9000 examples
- supernatural-instructions, 69624 examples (same as paper with 100 ex/task more can be used)
- flan (FLAN v2), up to 20M examples available
- vicuna
"""
def load_data(dataset_name):
if dataset_name == 'alpaca':
return load_dataset("tatsu-lab/alpaca")
elif dataset_name == 'alpaca-clean':
return load_dataset("yahma/alpaca-cleaned")
elif dataset_name == 'chip2':
return load_dataset("laion/OIG", data_files='unified_chip2.jsonl')
elif dataset_name == 'self-instruct':
return load_dataset("yizhongw/self_instruct", name='self_instruct')
elif dataset_name == 'hh-rlhf':
return load_dataset("Anthropic/hh-rlhf")
elif dataset_name == 'longform':
return load_dataset("akoksal/LongForm")
elif dataset_name == 'oasst1':
return load_dataset("timdettmers/openassistant-guanaco")
elif dataset_name == 'vicuna':
raise NotImplementedError("Vicuna data was not released.")
else:
if os.path.exists(dataset_name):
try:
args.dataset_format = args.dataset_format if args.dataset_format else "input-output"
full_dataset = local_dataset(dataset_name)
return full_dataset
except:
raise ValueError(f"Error loading dataset from {dataset_name}")
else:
raise NotImplementedError(f"Dataset {dataset_name} not implemented yet.")
def format_dataset(dataset, dataset_format):
if (
dataset_format == 'alpaca' or dataset_format == 'alpaca-clean' or
(dataset_format is None and args.dataset in ['alpaca', 'alpaca-clean'])
):
dataset = dataset.map(extract_alpaca_dataset, remove_columns=['instruction'])
elif dataset_format == 'chip2' or (dataset_format is None and args.dataset == 'chip2'):
dataset = dataset.map(lambda x: {
'input': x['text'].split('\n<bot>: ')[0].replace('<human>: ', ''),
'output': x['text'].split('\n<bot>: ')[1],
})
elif dataset_format == 'self-instruct' or (dataset_format is None and args.dataset == 'self-instruct'):
for old, new in [["prompt", "input"], ["completion", "output"]]:
dataset = dataset.rename_column(old, new)
elif dataset_format == 'hh-rlhf' or (dataset_format is None and args.dataset == 'hh-rlhf'):
dataset = dataset.map(lambda x: {
'input': '',
'output': x['chosen']
})
elif dataset_format == 'oasst1' or (dataset_format is None and args.dataset == 'oasst1'):
dataset = dataset.map(lambda x: {
'input': '',
'output': x['text'],
})
elif dataset_format == 'input-output':
# leave as is
pass
# Remove unused columns.
dataset = dataset.remove_columns(
[col for col in dataset.column_names['train'] if col not in ['input', 'output']]
)
return dataset
# Load dataset.
dataset = load_data(args.dataset)
dataset = format_dataset(dataset, args.dataset_format)
print(dataset)
# Split train/eval, reduce size
if args.do_eval or args.do_predict:
if 'eval' in dataset:
eval_dataset = dataset['eval']
else:
print('Splitting train dataset in train and validation according to `eval_dataset_size`')
dataset = dataset["train"].train_test_split(
test_size=args.eval_dataset_size, shuffle=True, seed=42
)
eval_dataset = dataset['test']
if args.max_eval_samples is not None and len(eval_dataset) > args.max_eval_samples:
eval_dataset = eval_dataset.select(range(args.max_eval_samples))
if args.group_by_length:
eval_dataset = eval_dataset.map(lambda x: {'length': len(x['input']) + len(x['output'])})
if args.do_train:
train_dataset = dataset['train']
if args.max_train_samples is not None and len(train_dataset) > args.max_train_samples:
train_dataset = train_dataset.select(range(args.max_train_samples))
if args.group_by_length:
train_dataset = train_dataset.map(lambda x: {'length': len(x['input']) + len(x['output'])})
data_collator = DataCollatorForCausalLM(
tokenizer=tokenizer,
source_max_len=args.source_max_len,
target_max_len=args.target_max_len,
train_on_source=args.train_on_source,
predict_with_generate=args.predict_with_generate,
)
return dict(
train_dataset=train_dataset if args.do_train else None,
eval_dataset=eval_dataset if args.do_eval else None,
predict_dataset=eval_dataset if args.do_predict else None,
data_collator=data_collator
)
def get_last_checkpoint(checkpoint_dir):
if isdir(checkpoint_dir):
is_completed = exists(join(checkpoint_dir, 'completed'))
if is_completed: return None, True # already finished
max_step = 0
for filename in os.listdir(checkpoint_dir):
if isdir(join(checkpoint_dir, filename)) and filename.startswith('checkpoint'):
max_step = max(max_step, int(filename.replace('checkpoint-', '')))
if max_step == 0: return None, is_completed # training started, but no checkpoint
checkpoint_dir = join(checkpoint_dir, f'checkpoint-{max_step}')
print(f"Found a previous checkpoint at: {checkpoint_dir}")
return checkpoint_dir, is_completed # checkpoint found!
return None, False # first training
def train():
hfparser = transformers.HfArgumentParser((
ModelArguments, DataArguments, TrainingArguments, GenerationArguments
))
model_args, data_args, training_args, generation_args, extra_args = \
hfparser.parse_args_into_dataclasses(return_remaining_strings=True)
#training_args.generation_config = transformers.GenerationConfig(**vars(generation_args))
args = argparse.Namespace(
**vars(model_args), **vars(data_args), **vars(training_args)
)
print(args)
checkpoint_dir, completed_training = get_last_checkpoint(args.output_dir)
if completed_training:
print('Detected that training was already completed!')
model, tokenizer = get_accelerate_model(args, checkpoint_dir)
model.config.use_cache = False
print('loaded model')
set_seed(args.seed)
data_module = make_data_module(tokenizer=tokenizer, args=args)
if torch.cuda.device_count() > 1:
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
model.is_parallelizable = True
model.model_parallel = True
trainer = Seq2SeqTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
**{k:v for k,v in data_module.items() if k != 'predict_dataset'},
)
# Callbacks
if not args.full_finetune:
trainer.add_callback(SavePeftModelCallback)
if args.do_mmlu_eval:
if args.mmlu_dataset == 'mmlu-zs':
mmlu_dataset = load_dataset("json", data_files={
'eval': 'data/mmlu/zero_shot_mmlu_val.json',
'test': 'data/mmlu/zero_shot_mmlu_test.json',
})
mmlu_dataset = mmlu_dataset.remove_columns('subject')
# MMLU Five-shot (Eval/Test only)
elif args.mmlu_dataset == 'mmlu' or args.mmlu_dataset == 'mmlu-fs':
mmlu_dataset = load_dataset("json", data_files={
'eval': 'data/mmlu/five_shot_mmlu_val.json',
'test': 'data/mmlu/five_shot_mmlu_test.json',
})
# mmlu_dataset = mmlu_dataset.remove_columns('subject')
mmlu_dataset = mmlu_dataset[args.mmlu_split]
if args.max_mmlu_samples is not None:
mmlu_dataset = mmlu_dataset.select(range(args.max_mmlu_samples))
abcd_idx = [
tokenizer("A", add_special_tokens=False).input_ids[0],
tokenizer("B", add_special_tokens=False).input_ids[0],
tokenizer("C", add_special_tokens=False).input_ids[0],
tokenizer("D", add_special_tokens=False).input_ids[0],
]
accuracy = evaluate.load("accuracy")
class MMLUEvalCallback(transformers.TrainerCallback):
def on_evaluate(self, args, state, control, model, **kwargs):
data_loader = trainer.get_eval_dataloader(mmlu_dataset)
source_max_len = trainer.data_collator.source_max_len
trainer.data_collator.source_max_len = args.mmlu_source_max_len
trainer.model.eval()
preds, refs = [], []
loss_mmlu = 0
for batch in tqdm(data_loader, total=len(data_loader)):
(loss, logits, labels) = trainer.prediction_step(trainer.model,batch,prediction_loss_only=False,)
# There are two tokens, the output, and eos token.
for i, logit in enumerate(logits):
label_non_zero_id = (batch['labels'][i] != -100).nonzero()[0][0]
logit_abcd = logit[label_non_zero_id-1][abcd_idx]
preds.append(torch.argmax(logit_abcd).item())
labels = labels[labels != IGNORE_INDEX].view(-1, 2)[:,0]
refs += [abcd_idx.index(label) for label in labels.tolist()]
loss_mmlu += loss.item()
# Extract results by subject.
results = {'mmlu_loss':loss_mmlu/len(data_loader)}
subject = mmlu_dataset['subject']
subjects = {s:{'refs':[], 'preds':[]} for s in set(subject)}
for s,p,r in zip(subject, preds, refs):
subjects[s]['preds'].append(p)
subjects[s]['refs'].append(r)
subject_scores = []
for subject in subjects:
subject_score = accuracy.compute(
references=subjects[subject]['refs'],
predictions=subjects[subject]['preds']
)['accuracy']
results[f'mmlu_{args.mmlu_split}_accuracy_{subject}'] = subject_score
subject_scores.append(subject_score)
results[f'mmlu_{args.mmlu_split}_accuracy'] = np.mean(subject_scores)
trainer.log(results)
trainer.data_collator.source_max_len = source_max_len
trainer.add_callback(MMLUEvalCallback)
# Verifying the datatypes and parameter counts before training.
print_trainable_parameters(args, model)
dtypes = {}
for _, p in model.named_parameters():
dtype = p.dtype
if dtype not in dtypes: dtypes[dtype] = 0
dtypes[dtype] += p.numel()
total = 0
for k, v in dtypes.items(): total+= v
for k, v in dtypes.items():
print(k, v, v/total)
all_metrics = {"run_name": args.run_name}
# Training
if args.do_train:
logger.info("*** Train ***")
# Note: `resume_from_checkpoint` not supported for adapter checkpoints by HF.
# Currently adapter checkpoint is reloaded as expected but optimizer/scheduler states are not.
train_result = trainer.train()
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
all_metrics.update(metrics)
# Evaluation
if args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(metric_key_prefix="eval")
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
all_metrics.update(metrics)
# Prediction
if args.do_predict:
logger.info("*** Predict ***")
prediction_output = trainer.predict(test_dataset=data_module['predict_dataset'],metric_key_prefix="predict")
prediction_metrics = prediction_output.metrics
predictions = prediction_output.predictions
predictions = np.where(predictions != -100, predictions, tokenizer.pad_token_id)
predictions = tokenizer.batch_decode(
predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
with open(os.path.join(args.output_dir, 'predictions.jsonl'), 'w') as fout:
for i, example in enumerate(data_module['predict_dataset']):
example['prediction_with_input'] = predictions[i].strip()
example['prediction'] = predictions[i].replace(example['input'], '').strip()
fout.write(json.dumps(example) + '\n')
print(prediction_metrics)
trainer.log_metrics("predict", prediction_metrics)
trainer.save_metrics("predict", prediction_metrics)
all_metrics.update(prediction_metrics)
if (args.do_train or args.do_eval or args.do_predict):
with open(os.path.join(args.output_dir, "metrics.json"), "w") as fout:
fout.write(json.dumps(all_metrics))
if __name__ == "__main__":
train()