KoBigBird-KoBart-News-Summarization

This model is a fine-tuned version of noahkim/KoBigBird-KoBart-News-Summarization on the daekeun-ml/naver-news-summarization-ko

Model description

<<20221110 Commit>>

<<KoBigBird-KoBart-News-Summarization ๋ชจ๋ธ ์„ค๋ช…>>

๋‹ค์ค‘๋ฌธ์„œ์š”์•ฝ(Multi-Document-Summarization) Task๋ฅผ ์œ„ํ•ด์„œ KoBigBird ๋ชจ๋ธ์„ Encoder-Decoder๋ชจ๋ธ์„ ๋งŒ๋“ค์–ด์„œ ํ•™์Šต์„ ์ง„ํ–‰ํ–ˆ์Šต๋‹ˆ๋‹ค. KoBigBird๋ฅผ Decoder๋กœ ์“ฐ๋ ค๊ณ  ํ–ˆ์œผ๋‚˜ ์˜ค๋ฅ˜๊ฐ€ ์ƒ๊ฒจ์„œ ์š”์•ฝ์— ํŠนํ™”๋œ KoBART์˜ Decoder๋ฅผ ํ™œ์šฉํ•ด์„œ ๋ชจ๋ธ์„ ์ƒ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค.

ํ”„๋กœ์ ํŠธ์šฉ์œผ๋กœ ๋‰ด์Šค ์š”์•ฝ ๋ชจ๋ธ ํŠนํ™”๋œ ๋ชจ๋ธ์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด ๊ธฐ์กด์— ๋งŒ๋“ค์—ˆ๋˜ KoBigBird-KoBart-News-Summarization ๋ชจ๋ธ์— ์ถ”๊ฐ€์ ์œผ๋กœ daekeun-ml๋‹˜์ด ์ œ๊ณตํ•ด์ฃผ์‹  naver-news-summarization-ko ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํŒŒ์ธํŠœ๋‹ ํ–ˆ์Šต๋‹ˆ๋‹ค.

ํ˜„์žฌ AI-HUB์—์„œ ์ œ๊ณตํ•˜๋Š” ์š”์•ฝ ๋ฐ์ดํ„ฐ๋ฅผ ์ถ”๊ฐ€ ํ•™์Šต ์ง„ํ–‰ ์˜ˆ์ •์ž…๋‹ˆ๋‹ค. ์ง€์†์ ์œผ๋กœ ๋ฐœ์ „์‹œ์ผœ ์ข‹์€ ์„ฑ๋Šฅ์˜ ๋ชจ๋ธ์„ ๊ตฌํ˜„ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค. ๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.

์‹คํ–‰ํ™˜๊ฒฝ

  • Google Colab Pro
  • CPU : Intel(R) Xeon(R) CPU @ 2.20GHz
  • GPU : A100-SXM4-40GB

# Python Code
from transformers import AutoTokenizer
from transformers import AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("noahkim/KoT5_news_summarization")
model = AutoModelForSeq2SeqLM.from_pretrained("noahkim/KoT5_news_summarization")

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
4.0748 1.0 1388 4.3067
3.8457 2.0 2776 4.2039
3.7459 3.0 4164 4.1433
3.6773 4.0 5552 4.1236

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.2
Downloads last month
109
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model authors have turned it off explicitly.