Edit model card

ChatHercules-2.5-Mistral-7B

image/png

ChatHercules-2.5-Mistral-7B is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
      - model: Locutusque/Hercules-2.5-Mistral-7B
        layer_range: [0, 32]
      - model: openchat/openchat-3.5-0106
        layer_range: [0, 32]
merge_method: slerp
base_model: Locutusque/Hercules-2.5-Mistral-7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "hydra-project/ChatHercules-2.5-Mistral-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 68.24
AI2 Reasoning Challenge (25-Shot) 65.10
HellaSwag (10-Shot) 84.61
MMLU (5-Shot) 65.35
TruthfulQA (0-shot) 47.52
Winogrande (5-shot) 81.85
GSM8k (5-shot) 64.97

Quantization of Model hydra-project/ChatHercules-2.5-Mistral-7B. Created using llm-quantizer Pipeline

Downloads last month
76
GGUF
Model size
7.24B params
Architecture
llama

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .

Model tree for nold/ChatHercules-2.5-Mistral-7B-GGUF

Evaluation results