nold's picture
5cbcd7b73223f65507c83860e6280797dbdc9a91cbff904be837665f3ff7b298
94fb1c1 verified
|
raw
history blame
6.16 kB
---
license: apache-2.0
tags:
- Solar Moe
- Solar
- Lumosia
pipeline_tag: text-generation
model-index:
- name: Lumosia-v2-MoE-4x10.7
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 70.39
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.87
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.45
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 68.48
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.21
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.13
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Lumosia-v2-MoE-4x10.7
name: Open LLM Leaderboard
---
# Lumosia-v2-MoE-4x10.7
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64545af5ec40bbbd01242ca6/fKdOLTQNerr2fYYnWOiQD.png)
The Lumosia Series upgraded with Lumosia V2.
# What's New in Lumosia V2?
Lumosia V2 takes the original vision of being an "all-rounder" and refines it with more nuanced capabilities.
Topic/Prompt Based Approach:
Diverging from the keyword-based approach of its counterpart, Umbra.
Context and Coherence:
With a base context of 8k scrolling window and the ability to maintain coherence up to 16k.
Balanced and Versatile:
The core ethos of Lumosia V2 is balance. It's designed to be your go-to assistant.
Experimentation and User-Centric Development:
Lumosia V2 remains an experimental model, a mosaic of the best-performing Solar models, (selected based on user experience).
This version is a testament to the idea that innovation is a journey, not a destination.
Come join the Discord:
[ConvexAI](https://discord.gg/yYqmNmg7Wj)
Template:
```
### System:
### USER:{prompt}
### Assistant:
```
Settings:
```
Temp: 1.0
min-p: 0.02-0.1
```
## Evals:
* Avg:
* ARC:
* HellaSwag:
* MMLU:
* T-QA:
* Winogrande:
* GSM8K:
## Examples:
```
Example 1:
User:
Lumosia:
```
```
Example 2:
User:
Lumosia:
```
## 🧩 Configuration
```
yaml
base_model: DopeorNope/SOLARC-M-10.7B
gate_mode: hidden
dtype: bfloat16
experts:
- source_model: DopeorNope/SOLARC-M-10.7B
positive_prompts:
negative_prompts:
- source_model: Sao10K/Fimbulvetr-10.7B-v1 [Updated]
positive_prompts:
negative_prompts:
- source_model: jeonsworld/CarbonVillain-en-10.7B-v4 [Updated]
positive_prompts:
negative_prompts:
- source_model: kyujinpy/Sakura-SOLAR-Instruct
positive_prompts:
negative_prompts:
```
## 💻 Usage
```
python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Steelskull/Lumosia-v2-MoE-4x10.7"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Steelskull__Lumosia-v2-MoE-4x10.7)
| Metric |Value|
|---------------------------------|----:|
|Avg. |73.75|
|AI2 Reasoning Challenge (25-Shot)|70.39|
|HellaSwag (10-Shot) |87.87|
|MMLU (5-Shot) |66.45|
|TruthfulQA (0-shot) |68.48|
|Winogrande (5-shot) |84.21|
|GSM8k (5-shot) |65.13|
***
Quantization of Model [Steelskull/Lumosia-v2-MoE-4x10.7](https://huggingface.co/Steelskull/Lumosia-v2-MoE-4x10.7).
Created using [llm-quantizer](https://github.com/Nold360/llm-quantizer) Pipeline