zpn's picture
remove details about v1 from other checkpoint (#4)
b53d557 verified
|
raw
history blame
63.5 kB
metadata
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
  - feature-extraction
  - sentence-similarity
  - mteb
  - transformers
  - transformers.js
license: apache-2.0
language:
  - en
inference: false
model-index:
  - name: epoch_0_model
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 76.98507462686568
          - type: ap
            value: 39.47222193126652
          - type: f1
            value: 70.5923611893019
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 87.540175
          - type: ap
            value: 83.16128207188409
          - type: f1
            value: 87.5231988227265
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 46.80799999999999
          - type: f1
            value: 46.2632547445265
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 30.583
          - type: map_at_10
            value: 46.17
          - type: map_at_100
            value: 47.115
          - type: map_at_1000
            value: 47.121
          - type: map_at_3
            value: 41.489
          - type: map_at_5
            value: 44.046
          - type: mrr_at_1
            value: 30.939
          - type: mrr_at_10
            value: 46.289
          - type: mrr_at_100
            value: 47.241
          - type: mrr_at_1000
            value: 47.247
          - type: mrr_at_3
            value: 41.596
          - type: mrr_at_5
            value: 44.149
          - type: ndcg_at_1
            value: 30.583
          - type: ndcg_at_10
            value: 54.812000000000005
          - type: ndcg_at_100
            value: 58.605
          - type: ndcg_at_1000
            value: 58.753
          - type: ndcg_at_3
            value: 45.095
          - type: ndcg_at_5
            value: 49.744
          - type: precision_at_1
            value: 30.583
          - type: precision_at_10
            value: 8.243
          - type: precision_at_100
            value: 0.984
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 18.516
          - type: precision_at_5
            value: 13.385
          - type: recall_at_1
            value: 30.583
          - type: recall_at_10
            value: 82.432
          - type: recall_at_100
            value: 98.43499999999999
          - type: recall_at_1000
            value: 99.57300000000001
          - type: recall_at_3
            value: 55.547999999999995
          - type: recall_at_5
            value: 66.927
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 45.17830107652425
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 35.90561364087807
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 59.57222651819297
          - type: mrr
            value: 73.19241085169062
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 89.55181686367382
          - type: cos_sim_spearman
            value: 87.18933606575987
          - type: euclidean_pearson
            value: 87.78077503434338
          - type: euclidean_spearman
            value: 87.18933606575987
          - type: manhattan_pearson
            value: 87.75124980168601
          - type: manhattan_spearman
            value: 86.79113422137638
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 81.09415584415585
          - type: f1
            value: 80.60088693212091
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 36.57061229905462
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 32.05342946608653
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 34.376
          - type: map_at_10
            value: 45.214
          - type: map_at_100
            value: 46.635
          - type: map_at_1000
            value: 46.755
          - type: map_at_3
            value: 42.198
          - type: map_at_5
            value: 43.723
          - type: mrr_at_1
            value: 41.774
          - type: mrr_at_10
            value: 51.07000000000001
          - type: mrr_at_100
            value: 51.785000000000004
          - type: mrr_at_1000
            value: 51.824999999999996
          - type: mrr_at_3
            value: 48.808
          - type: mrr_at_5
            value: 50.11
          - type: ndcg_at_1
            value: 41.774
          - type: ndcg_at_10
            value: 51.105999999999995
          - type: ndcg_at_100
            value: 56.358
          - type: ndcg_at_1000
            value: 58.205
          - type: ndcg_at_3
            value: 46.965
          - type: ndcg_at_5
            value: 48.599
          - type: precision_at_1
            value: 41.774
          - type: precision_at_10
            value: 9.514
          - type: precision_at_100
            value: 1.508
          - type: precision_at_1000
            value: 0.196
          - type: precision_at_3
            value: 22.175
          - type: precision_at_5
            value: 15.508
          - type: recall_at_1
            value: 34.376
          - type: recall_at_10
            value: 61.748000000000005
          - type: recall_at_100
            value: 84.025
          - type: recall_at_1000
            value: 95.5
          - type: recall_at_3
            value: 49.378
          - type: recall_at_5
            value: 54.276
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 32.394
          - type: map_at_10
            value: 42.707
          - type: map_at_100
            value: 43.893
          - type: map_at_1000
            value: 44.019000000000005
          - type: map_at_3
            value: 39.51
          - type: map_at_5
            value: 41.381
          - type: mrr_at_1
            value: 41.019
          - type: mrr_at_10
            value: 49.042
          - type: mrr_at_100
            value: 49.669000000000004
          - type: mrr_at_1000
            value: 49.712
          - type: mrr_at_3
            value: 46.921
          - type: mrr_at_5
            value: 48.192
          - type: ndcg_at_1
            value: 41.019
          - type: ndcg_at_10
            value: 48.46
          - type: ndcg_at_100
            value: 52.537
          - type: ndcg_at_1000
            value: 54.491
          - type: ndcg_at_3
            value: 44.232
          - type: ndcg_at_5
            value: 46.305
          - type: precision_at_1
            value: 41.019
          - type: precision_at_10
            value: 9.134
          - type: precision_at_100
            value: 1.422
          - type: precision_at_1000
            value: 0.188
          - type: precision_at_3
            value: 21.38
          - type: precision_at_5
            value: 15.096000000000002
          - type: recall_at_1
            value: 32.394
          - type: recall_at_10
            value: 58.11500000000001
          - type: recall_at_100
            value: 75.509
          - type: recall_at_1000
            value: 87.812
          - type: recall_at_3
            value: 45.476
          - type: recall_at_5
            value: 51.549
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 43.47
          - type: map_at_10
            value: 55.871
          - type: map_at_100
            value: 56.745000000000005
          - type: map_at_1000
            value: 56.794
          - type: map_at_3
            value: 52.439
          - type: map_at_5
            value: 54.412000000000006
          - type: mrr_at_1
            value: 49.592000000000006
          - type: mrr_at_10
            value: 59.34199999999999
          - type: mrr_at_100
            value: 59.857000000000006
          - type: mrr_at_1000
            value: 59.88
          - type: mrr_at_3
            value: 56.897
          - type: mrr_at_5
            value: 58.339
          - type: ndcg_at_1
            value: 49.592000000000006
          - type: ndcg_at_10
            value: 61.67
          - type: ndcg_at_100
            value: 65.11099999999999
          - type: ndcg_at_1000
            value: 66.065
          - type: ndcg_at_3
            value: 56.071000000000005
          - type: ndcg_at_5
            value: 58.84700000000001
          - type: precision_at_1
            value: 49.592000000000006
          - type: precision_at_10
            value: 9.774
          - type: precision_at_100
            value: 1.2449999999999999
          - type: precision_at_1000
            value: 0.13699999999999998
          - type: precision_at_3
            value: 24.66
          - type: precision_at_5
            value: 16.878
          - type: recall_at_1
            value: 43.47
          - type: recall_at_10
            value: 75.387
          - type: recall_at_100
            value: 90.253
          - type: recall_at_1000
            value: 97.00800000000001
          - type: recall_at_3
            value: 60.616
          - type: recall_at_5
            value: 67.31899999999999
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 26.633000000000003
          - type: map_at_10
            value: 35.497
          - type: map_at_100
            value: 36.504
          - type: map_at_1000
            value: 36.574
          - type: map_at_3
            value: 33.115
          - type: map_at_5
            value: 34.536
          - type: mrr_at_1
            value: 28.927000000000003
          - type: mrr_at_10
            value: 37.778
          - type: mrr_at_100
            value: 38.634
          - type: mrr_at_1000
            value: 38.690000000000005
          - type: mrr_at_3
            value: 35.518
          - type: mrr_at_5
            value: 36.908
          - type: ndcg_at_1
            value: 28.927000000000003
          - type: ndcg_at_10
            value: 40.327
          - type: ndcg_at_100
            value: 45.321
          - type: ndcg_at_1000
            value: 47.214
          - type: ndcg_at_3
            value: 35.762
          - type: ndcg_at_5
            value: 38.153999999999996
          - type: precision_at_1
            value: 28.927000000000003
          - type: precision_at_10
            value: 6.045
          - type: precision_at_100
            value: 0.901
          - type: precision_at_1000
            value: 0.11
          - type: precision_at_3
            value: 15.140999999999998
          - type: precision_at_5
            value: 10.485999999999999
          - type: recall_at_1
            value: 26.633000000000003
          - type: recall_at_10
            value: 52.99
          - type: recall_at_100
            value: 76.086
          - type: recall_at_1000
            value: 90.46300000000001
          - type: recall_at_3
            value: 40.738
          - type: recall_at_5
            value: 46.449
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.521
          - type: map_at_10
            value: 25.130000000000003
          - type: map_at_100
            value: 26.176
          - type: map_at_1000
            value: 26.289
          - type: map_at_3
            value: 22.829
          - type: map_at_5
            value: 24.082
          - type: mrr_at_1
            value: 21.766
          - type: mrr_at_10
            value: 29.801
          - type: mrr_at_100
            value: 30.682
          - type: mrr_at_1000
            value: 30.75
          - type: mrr_at_3
            value: 27.633000000000003
          - type: mrr_at_5
            value: 28.858
          - type: ndcg_at_1
            value: 21.766
          - type: ndcg_at_10
            value: 30.026000000000003
          - type: ndcg_at_100
            value: 35.429
          - type: ndcg_at_1000
            value: 38.236
          - type: ndcg_at_3
            value: 25.968000000000004
          - type: ndcg_at_5
            value: 27.785
          - type: precision_at_1
            value: 21.766
          - type: precision_at_10
            value: 5.498
          - type: precision_at_100
            value: 0.9450000000000001
          - type: precision_at_1000
            value: 0.133
          - type: precision_at_3
            value: 12.687000000000001
          - type: precision_at_5
            value: 9.005
          - type: recall_at_1
            value: 17.521
          - type: recall_at_10
            value: 40.454
          - type: recall_at_100
            value: 64.828
          - type: recall_at_1000
            value: 84.83800000000001
          - type: recall_at_3
            value: 28.758
          - type: recall_at_5
            value: 33.617000000000004
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 30.564999999999998
          - type: map_at_10
            value: 40.664
          - type: map_at_100
            value: 41.995
          - type: map_at_1000
            value: 42.104
          - type: map_at_3
            value: 37.578
          - type: map_at_5
            value: 39.247
          - type: mrr_at_1
            value: 37.44
          - type: mrr_at_10
            value: 46.533
          - type: mrr_at_100
            value: 47.363
          - type: mrr_at_1000
            value: 47.405
          - type: mrr_at_3
            value: 44.224999999999994
          - type: mrr_at_5
            value: 45.549
          - type: ndcg_at_1
            value: 37.44
          - type: ndcg_at_10
            value: 46.574
          - type: ndcg_at_100
            value: 52.024
          - type: ndcg_at_1000
            value: 53.93900000000001
          - type: ndcg_at_3
            value: 41.722
          - type: ndcg_at_5
            value: 43.973
          - type: precision_at_1
            value: 37.44
          - type: precision_at_10
            value: 8.344999999999999
          - type: precision_at_100
            value: 1.278
          - type: precision_at_1000
            value: 0.16
          - type: precision_at_3
            value: 19.442
          - type: precision_at_5
            value: 13.802
          - type: recall_at_1
            value: 30.564999999999998
          - type: recall_at_10
            value: 58.207
          - type: recall_at_100
            value: 81.137
          - type: recall_at_1000
            value: 93.506
          - type: recall_at_3
            value: 44.606
          - type: recall_at_5
            value: 50.373000000000005
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 27.892
          - type: map_at_10
            value: 37.251
          - type: map_at_100
            value: 38.606
          - type: map_at_1000
            value: 38.716
          - type: map_at_3
            value: 34.312
          - type: map_at_5
            value: 35.791000000000004
          - type: mrr_at_1
            value: 34.247
          - type: mrr_at_10
            value: 42.696
          - type: mrr_at_100
            value: 43.659
          - type: mrr_at_1000
            value: 43.711
          - type: mrr_at_3
            value: 40.563
          - type: mrr_at_5
            value: 41.625
          - type: ndcg_at_1
            value: 34.247
          - type: ndcg_at_10
            value: 42.709
          - type: ndcg_at_100
            value: 48.422
          - type: ndcg_at_1000
            value: 50.544
          - type: ndcg_at_3
            value: 38.105
          - type: ndcg_at_5
            value: 39.846
          - type: precision_at_1
            value: 34.247
          - type: precision_at_10
            value: 7.66
          - type: precision_at_100
            value: 1.2109999999999999
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 17.884
          - type: precision_at_5
            value: 12.489
          - type: recall_at_1
            value: 27.892
          - type: recall_at_10
            value: 53.559
          - type: recall_at_100
            value: 78.018
          - type: recall_at_1000
            value: 92.07300000000001
          - type: recall_at_3
            value: 40.154
          - type: recall_at_5
            value: 45.078
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 27.29375
          - type: map_at_10
            value: 36.19533333333334
          - type: map_at_100
            value: 37.33183333333334
          - type: map_at_1000
            value: 37.44616666666667
          - type: map_at_3
            value: 33.49125
          - type: map_at_5
            value: 34.94166666666667
          - type: mrr_at_1
            value: 32.336666666666666
          - type: mrr_at_10
            value: 40.45983333333333
          - type: mrr_at_100
            value: 41.26533333333334
          - type: mrr_at_1000
            value: 41.321583333333336
          - type: mrr_at_3
            value: 38.23416666666667
          - type: mrr_at_5
            value: 39.48491666666666
          - type: ndcg_at_1
            value: 32.336666666666666
          - type: ndcg_at_10
            value: 41.39958333333333
          - type: ndcg_at_100
            value: 46.293
          - type: ndcg_at_1000
            value: 48.53425
          - type: ndcg_at_3
            value: 36.88833333333333
          - type: ndcg_at_5
            value: 38.90733333333333
          - type: precision_at_1
            value: 32.336666666666666
          - type: precision_at_10
            value: 7.175916666666667
          - type: precision_at_100
            value: 1.1311666666666669
          - type: precision_at_1000
            value: 0.15141666666666667
          - type: precision_at_3
            value: 16.841166666666666
          - type: precision_at_5
            value: 11.796583333333334
          - type: recall_at_1
            value: 27.29375
          - type: recall_at_10
            value: 52.514583333333334
          - type: recall_at_100
            value: 74.128
          - type: recall_at_1000
            value: 89.64125
          - type: recall_at_3
            value: 39.83258333333333
          - type: recall_at_5
            value: 45.126416666666664
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.62
          - type: map_at_10
            value: 31.517
          - type: map_at_100
            value: 32.322
          - type: map_at_1000
            value: 32.422000000000004
          - type: map_at_3
            value: 29.293999999999997
          - type: map_at_5
            value: 30.403999999999996
          - type: mrr_at_1
            value: 27.607
          - type: mrr_at_10
            value: 34.294999999999995
          - type: mrr_at_100
            value: 35.045
          - type: mrr_at_1000
            value: 35.114000000000004
          - type: mrr_at_3
            value: 32.311
          - type: mrr_at_5
            value: 33.369
          - type: ndcg_at_1
            value: 27.607
          - type: ndcg_at_10
            value: 35.853
          - type: ndcg_at_100
            value: 39.919
          - type: ndcg_at_1000
            value: 42.452
          - type: ndcg_at_3
            value: 31.702
          - type: ndcg_at_5
            value: 33.47
          - type: precision_at_1
            value: 27.607
          - type: precision_at_10
            value: 5.598
          - type: precision_at_100
            value: 0.83
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 13.700999999999999
          - type: precision_at_5
            value: 9.325
          - type: recall_at_1
            value: 24.62
          - type: recall_at_10
            value: 46.475
          - type: recall_at_100
            value: 64.891
          - type: recall_at_1000
            value: 83.524
          - type: recall_at_3
            value: 34.954
          - type: recall_at_5
            value: 39.471000000000004
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 16.858999999999998
          - type: map_at_10
            value: 23.746000000000002
          - type: map_at_100
            value: 24.731
          - type: map_at_1000
            value: 24.86
          - type: map_at_3
            value: 21.603
          - type: map_at_5
            value: 22.811999999999998
          - type: mrr_at_1
            value: 20.578
          - type: mrr_at_10
            value: 27.618
          - type: mrr_at_100
            value: 28.459
          - type: mrr_at_1000
            value: 28.543000000000003
          - type: mrr_at_3
            value: 25.533
          - type: mrr_at_5
            value: 26.730999999999998
          - type: ndcg_at_1
            value: 20.578
          - type: ndcg_at_10
            value: 28.147
          - type: ndcg_at_100
            value: 32.946999999999996
          - type: ndcg_at_1000
            value: 36.048
          - type: ndcg_at_3
            value: 24.32
          - type: ndcg_at_5
            value: 26.131999999999998
          - type: precision_at_1
            value: 20.578
          - type: precision_at_10
            value: 5.061999999999999
          - type: precision_at_100
            value: 0.8789999999999999
          - type: precision_at_1000
            value: 0.132
          - type: precision_at_3
            value: 11.448
          - type: precision_at_5
            value: 8.251999999999999
          - type: recall_at_1
            value: 16.858999999999998
          - type: recall_at_10
            value: 37.565
          - type: recall_at_100
            value: 59.239
          - type: recall_at_1000
            value: 81.496
          - type: recall_at_3
            value: 26.865
          - type: recall_at_5
            value: 31.581
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 26.11
          - type: map_at_10
            value: 34.214
          - type: map_at_100
            value: 35.291
          - type: map_at_1000
            value: 35.400999999999996
          - type: map_at_3
            value: 31.541000000000004
          - type: map_at_5
            value: 33.21
          - type: mrr_at_1
            value: 30.97
          - type: mrr_at_10
            value: 38.522
          - type: mrr_at_100
            value: 39.37
          - type: mrr_at_1000
            value: 39.437
          - type: mrr_at_3
            value: 36.193999999999996
          - type: mrr_at_5
            value: 37.691
          - type: ndcg_at_1
            value: 30.97
          - type: ndcg_at_10
            value: 39.2
          - type: ndcg_at_100
            value: 44.267
          - type: ndcg_at_1000
            value: 46.760000000000005
          - type: ndcg_at_3
            value: 34.474
          - type: ndcg_at_5
            value: 37.016
          - type: precision_at_1
            value: 30.97
          - type: precision_at_10
            value: 6.521000000000001
          - type: precision_at_100
            value: 1.011
          - type: precision_at_1000
            value: 0.135
          - type: precision_at_3
            value: 15.392
          - type: precision_at_5
            value: 11.026
          - type: recall_at_1
            value: 26.11
          - type: recall_at_10
            value: 50.14999999999999
          - type: recall_at_100
            value: 72.398
          - type: recall_at_1000
            value: 89.764
          - type: recall_at_3
            value: 37.352999999999994
          - type: recall_at_5
            value: 43.736000000000004
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 25.514
          - type: map_at_10
            value: 34.278999999999996
          - type: map_at_100
            value: 35.847
          - type: map_at_1000
            value: 36.086
          - type: map_at_3
            value: 31.563999999999997
          - type: map_at_5
            value: 32.903999999999996
          - type: mrr_at_1
            value: 30.830000000000002
          - type: mrr_at_10
            value: 38.719
          - type: mrr_at_100
            value: 39.678999999999995
          - type: mrr_at_1000
            value: 39.741
          - type: mrr_at_3
            value: 36.265
          - type: mrr_at_5
            value: 37.599
          - type: ndcg_at_1
            value: 30.830000000000002
          - type: ndcg_at_10
            value: 39.997
          - type: ndcg_at_100
            value: 45.537
          - type: ndcg_at_1000
            value: 48.296
          - type: ndcg_at_3
            value: 35.429
          - type: ndcg_at_5
            value: 37.3
          - type: precision_at_1
            value: 30.830000000000002
          - type: precision_at_10
            value: 7.747
          - type: precision_at_100
            value: 1.516
          - type: precision_at_1000
            value: 0.24
          - type: precision_at_3
            value: 16.601
          - type: precision_at_5
            value: 11.818
          - type: recall_at_1
            value: 25.514
          - type: recall_at_10
            value: 50.71600000000001
          - type: recall_at_100
            value: 75.40299999999999
          - type: recall_at_1000
            value: 93.10300000000001
          - type: recall_at_3
            value: 37.466
          - type: recall_at_5
            value: 42.677
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.571
          - type: map_at_10
            value: 28.254
          - type: map_at_100
            value: 29.237000000000002
          - type: map_at_1000
            value: 29.334
          - type: map_at_3
            value: 25.912000000000003
          - type: map_at_5
            value: 26.798
          - type: mrr_at_1
            value: 23.29
          - type: mrr_at_10
            value: 30.102
          - type: mrr_at_100
            value: 30.982
          - type: mrr_at_1000
            value: 31.051000000000002
          - type: mrr_at_3
            value: 27.942
          - type: mrr_at_5
            value: 28.848000000000003
          - type: ndcg_at_1
            value: 23.29
          - type: ndcg_at_10
            value: 32.726
          - type: ndcg_at_100
            value: 37.644
          - type: ndcg_at_1000
            value: 40.161
          - type: ndcg_at_3
            value: 27.91
          - type: ndcg_at_5
            value: 29.461
          - type: precision_at_1
            value: 23.29
          - type: precision_at_10
            value: 5.213
          - type: precision_at_100
            value: 0.828
          - type: precision_at_1000
            value: 0.117
          - type: precision_at_3
            value: 11.583
          - type: precision_at_5
            value: 7.8740000000000006
          - type: recall_at_1
            value: 21.571
          - type: recall_at_10
            value: 44.809
          - type: recall_at_100
            value: 67.74900000000001
          - type: recall_at_1000
            value: 86.60799999999999
          - type: recall_at_3
            value: 31.627
          - type: recall_at_5
            value: 35.391
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 9.953
          - type: map_at_10
            value: 17.183
          - type: map_at_100
            value: 18.926000000000002
          - type: map_at_1000
            value: 19.105
          - type: map_at_3
            value: 14.308000000000002
          - type: map_at_5
            value: 15.738
          - type: mrr_at_1
            value: 22.02
          - type: mrr_at_10
            value: 33.181
          - type: mrr_at_100
            value: 34.357
          - type: mrr_at_1000
            value: 34.398
          - type: mrr_at_3
            value: 29.793999999999997
          - type: mrr_at_5
            value: 31.817
          - type: ndcg_at_1
            value: 22.02
          - type: ndcg_at_10
            value: 24.712
          - type: ndcg_at_100
            value: 32.025
          - type: ndcg_at_1000
            value: 35.437000000000005
          - type: ndcg_at_3
            value: 19.852
          - type: ndcg_at_5
            value: 21.565
          - type: precision_at_1
            value: 22.02
          - type: precision_at_10
            value: 7.779
          - type: precision_at_100
            value: 1.554
          - type: precision_at_1000
            value: 0.219
          - type: precision_at_3
            value: 14.832
          - type: precision_at_5
            value: 11.453000000000001
          - type: recall_at_1
            value: 9.953
          - type: recall_at_10
            value: 30.375000000000004
          - type: recall_at_100
            value: 55.737
          - type: recall_at_1000
            value: 75.071
          - type: recall_at_3
            value: 18.529999999999998
          - type: recall_at_5
            value: 23.313
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 8.651
          - type: map_at_10
            value: 19.674
          - type: map_at_100
            value: 27.855999999999998
          - type: map_at_1000
            value: 29.348000000000003
          - type: map_at_3
            value: 14.247000000000002
          - type: map_at_5
            value: 16.453
          - type: mrr_at_1
            value: 61.75000000000001
          - type: mrr_at_10
            value: 71.329
          - type: mrr_at_100
            value: 71.69200000000001
          - type: mrr_at_1000
            value: 71.699
          - type: mrr_at_3
            value: 69.042
          - type: mrr_at_5
            value: 70.679
          - type: ndcg_at_1
            value: 50.125
          - type: ndcg_at_10
            value: 40.199
          - type: ndcg_at_100
            value: 45.378
          - type: ndcg_at_1000
            value: 52.376999999999995
          - type: ndcg_at_3
            value: 44.342
          - type: ndcg_at_5
            value: 41.730000000000004
          - type: precision_at_1
            value: 61.75000000000001
          - type: precision_at_10
            value: 32.2
          - type: precision_at_100
            value: 10.298
          - type: precision_at_1000
            value: 1.984
          - type: precision_at_3
            value: 48.667
          - type: precision_at_5
            value: 40.5
          - type: recall_at_1
            value: 8.651
          - type: recall_at_10
            value: 25.607000000000003
          - type: recall_at_100
            value: 53.062
          - type: recall_at_1000
            value: 74.717
          - type: recall_at_3
            value: 15.661
          - type: recall_at_5
            value: 19.409000000000002
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 47.64500000000001
          - type: f1
            value: 43.71011316507787
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 54.613
          - type: map_at_10
            value: 68.02
          - type: map_at_100
            value: 68.366
          - type: map_at_1000
            value: 68.379
          - type: map_at_3
            value: 65.753
          - type: map_at_5
            value: 67.242
          - type: mrr_at_1
            value: 59.001000000000005
          - type: mrr_at_10
            value: 72.318
          - type: mrr_at_100
            value: 72.558
          - type: mrr_at_1000
            value: 72.56099999999999
          - type: mrr_at_3
            value: 70.22699999999999
          - type: mrr_at_5
            value: 71.655
          - type: ndcg_at_1
            value: 59.001000000000005
          - type: ndcg_at_10
            value: 74.386
          - type: ndcg_at_100
            value: 75.763
          - type: ndcg_at_1000
            value: 76.03
          - type: ndcg_at_3
            value: 70.216
          - type: ndcg_at_5
            value: 72.697
          - type: precision_at_1
            value: 59.001000000000005
          - type: precision_at_10
            value: 9.844
          - type: precision_at_100
            value: 1.068
          - type: precision_at_1000
            value: 0.11100000000000002
          - type: precision_at_3
            value: 28.523
          - type: precision_at_5
            value: 18.491
          - type: recall_at_1
            value: 54.613
          - type: recall_at_10
            value: 89.669
          - type: recall_at_100
            value: 95.387
          - type: recall_at_1000
            value: 97.129
          - type: recall_at_3
            value: 78.54100000000001
          - type: recall_at_5
            value: 84.637
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 20.348
          - type: map_at_10
            value: 32.464999999999996
          - type: map_at_100
            value: 34.235
          - type: map_at_1000
            value: 34.410000000000004
          - type: map_at_3
            value: 28.109
          - type: map_at_5
            value: 30.634
          - type: mrr_at_1
            value: 38.889
          - type: mrr_at_10
            value: 47.131
          - type: mrr_at_100
            value: 48.107
          - type: mrr_at_1000
            value: 48.138
          - type: mrr_at_3
            value: 44.599
          - type: mrr_at_5
            value: 46.181
          - type: ndcg_at_1
            value: 38.889
          - type: ndcg_at_10
            value: 39.86
          - type: ndcg_at_100
            value: 46.619
          - type: ndcg_at_1000
            value: 49.525999999999996
          - type: ndcg_at_3
            value: 35.768
          - type: ndcg_at_5
            value: 37.4
          - type: precision_at_1
            value: 38.889
          - type: precision_at_10
            value: 11.003
          - type: precision_at_100
            value: 1.796
          - type: precision_at_1000
            value: 0.233
          - type: precision_at_3
            value: 23.714
          - type: precision_at_5
            value: 17.901
          - type: recall_at_1
            value: 20.348
          - type: recall_at_10
            value: 46.781
          - type: recall_at_100
            value: 71.937
          - type: recall_at_1000
            value: 89.18599999999999
          - type: recall_at_3
            value: 32.16
          - type: recall_at_5
            value: 38.81
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 37.198
          - type: map_at_10
            value: 54.065
          - type: map_at_100
            value: 54.984
          - type: map_at_1000
            value: 55.05
          - type: map_at_3
            value: 50.758
          - type: map_at_5
            value: 52.758
          - type: mrr_at_1
            value: 74.396
          - type: mrr_at_10
            value: 81.352
          - type: mrr_at_100
            value: 81.562
          - type: mrr_at_1000
            value: 81.57
          - type: mrr_at_3
            value: 80.30199999999999
          - type: mrr_at_5
            value: 80.963
          - type: ndcg_at_1
            value: 74.396
          - type: ndcg_at_10
            value: 63.70099999999999
          - type: ndcg_at_100
            value: 66.874
          - type: ndcg_at_1000
            value: 68.171
          - type: ndcg_at_3
            value: 58.916999999999994
          - type: ndcg_at_5
            value: 61.495999999999995
          - type: precision_at_1
            value: 74.396
          - type: precision_at_10
            value: 13.228000000000002
          - type: precision_at_100
            value: 1.569
          - type: precision_at_1000
            value: 0.174
          - type: precision_at_3
            value: 37.007
          - type: precision_at_5
            value: 24.248
          - type: recall_at_1
            value: 37.198
          - type: recall_at_10
            value: 66.13799999999999
          - type: recall_at_100
            value: 78.45400000000001
          - type: recall_at_1000
            value: 87.04899999999999
          - type: recall_at_3
            value: 55.510000000000005
          - type: recall_at_5
            value: 60.621
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 86.32240000000002
          - type: ap
            value: 81.37708984744188
          - type: f1
            value: 86.29645005523952
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 16.402
          - type: map_at_10
            value: 28.097
          - type: map_at_100
            value: 29.421999999999997
          - type: map_at_1000
            value: 29.476999999999997
          - type: map_at_3
            value: 24.015
          - type: map_at_5
            value: 26.316
          - type: mrr_at_1
            value: 16.905
          - type: mrr_at_10
            value: 28.573999999999998
          - type: mrr_at_100
            value: 29.862
          - type: mrr_at_1000
            value: 29.912
          - type: mrr_at_3
            value: 24.589
          - type: mrr_at_5
            value: 26.851000000000003
          - type: ndcg_at_1
            value: 16.905
          - type: ndcg_at_10
            value: 34.99
          - type: ndcg_at_100
            value: 41.419
          - type: ndcg_at_1000
            value: 42.815999999999995
          - type: ndcg_at_3
            value: 26.695
          - type: ndcg_at_5
            value: 30.789
          - type: precision_at_1
            value: 16.905
          - type: precision_at_10
            value: 5.891
          - type: precision_at_100
            value: 0.91
          - type: precision_at_1000
            value: 0.10300000000000001
          - type: precision_at_3
            value: 11.724
          - type: precision_at_5
            value: 9.097
          - type: recall_at_1
            value: 16.402
          - type: recall_at_10
            value: 56.462999999999994
          - type: recall_at_100
            value: 86.246
          - type: recall_at_1000
            value: 96.926
          - type: recall_at_3
            value: 33.897
          - type: recall_at_5
            value: 43.718
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 92.35978112175103
          - type: f1
            value: 92.04704651024416
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 65.20063839489283
          - type: f1
            value: 45.34047546059121
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 67.74714189643578
          - type: f1
            value: 65.36156843270334
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 74.03160726294554
          - type: f1
            value: 73.42899064973165
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 31.347360980344476
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 29.56022733162805
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 30.60132765358296
          - type: mrr
            value: 31.710892632824468
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.827999999999999
          - type: map_at_10
            value: 13.547
          - type: map_at_100
            value: 16.869
          - type: map_at_1000
            value: 18.242
          - type: map_at_3
            value: 9.917
          - type: map_at_5
            value: 11.648
          - type: mrr_at_1
            value: 46.44
          - type: mrr_at_10
            value: 55.062
          - type: mrr_at_100
            value: 55.513999999999996
          - type: mrr_at_1000
            value: 55.564
          - type: mrr_at_3
            value: 52.735
          - type: mrr_at_5
            value: 54.391
          - type: ndcg_at_1
            value: 44.582
          - type: ndcg_at_10
            value: 35.684
          - type: ndcg_at_100
            value: 31.913999999999998
          - type: ndcg_at_1000
            value: 40.701
          - type: ndcg_at_3
            value: 40.819
          - type: ndcg_at_5
            value: 39.117000000000004
          - type: precision_at_1
            value: 46.129999999999995
          - type: precision_at_10
            value: 26.687
          - type: precision_at_100
            value: 8.062
          - type: precision_at_1000
            value: 2.073
          - type: precision_at_3
            value: 38.493
          - type: precision_at_5
            value: 34.241
          - type: recall_at_1
            value: 5.827999999999999
          - type: recall_at_10
            value: 17.391000000000002
          - type: recall_at_100
            value: 31.228
          - type: recall_at_1000
            value: 63.943000000000005
          - type: recall_at_3
            value: 10.81
          - type: recall_at_5
            value: 13.618
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.02
          - type: map_at_10
            value: 40.054
          - type: map_at_100
            value: 41.318
          - type: map_at_1000
            value: 41.343999999999994
          - type: map_at_3
            value: 35.221999999999994
          - type: map_at_5
            value: 38.057
          - type: mrr_at_1
            value: 27.230999999999998
          - type: mrr_at_10
            value: 42.315999999999995
          - type: mrr_at_100
            value: 43.254
          - type: mrr_at_1000
            value: 43.272
          - type: mrr_at_3
            value: 38.176
          - type: mrr_at_5
            value: 40.64
          - type: ndcg_at_1
            value: 27.230999999999998
          - type: ndcg_at_10
            value: 48.551
          - type: ndcg_at_100
            value: 53.737
          - type: ndcg_at_1000
            value: 54.313
          - type: ndcg_at_3
            value: 39.367999999999995
          - type: ndcg_at_5
            value: 44.128
          - type: precision_at_1
            value: 27.230999999999998
          - type: precision_at_10
            value: 8.578
          - type: precision_at_100
            value: 1.145
          - type: precision_at_1000
            value: 0.12
          - type: precision_at_3
            value: 18.704
          - type: precision_at_5
            value: 13.927999999999999
          - type: recall_at_1
            value: 24.02
          - type: recall_at_10
            value: 72.258
          - type: recall_at_100
            value: 94.489
          - type: recall_at_1000
            value: 98.721
          - type: recall_at_3
            value: 48.373
          - type: recall_at_5
            value: 59.388
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 70.476
          - type: map_at_10
            value: 84.41300000000001
          - type: map_at_100
            value: 85.036
          - type: map_at_1000
            value: 85.055
          - type: map_at_3
            value: 81.45599999999999
          - type: map_at_5
            value: 83.351
          - type: mrr_at_1
            value: 81.07
          - type: mrr_at_10
            value: 87.408
          - type: mrr_at_100
            value: 87.509
          - type: mrr_at_1000
            value: 87.51
          - type: mrr_at_3
            value: 86.432
          - type: mrr_at_5
            value: 87.128
          - type: ndcg_at_1
            value: 81.13
          - type: ndcg_at_10
            value: 88.18599999999999
          - type: ndcg_at_100
            value: 89.401
          - type: ndcg_at_1000
            value: 89.515
          - type: ndcg_at_3
            value: 85.332
          - type: ndcg_at_5
            value: 86.97
          - type: precision_at_1
            value: 81.13
          - type: precision_at_10
            value: 13.361
          - type: precision_at_100
            value: 1.5230000000000001
          - type: precision_at_1000
            value: 0.156
          - type: precision_at_3
            value: 37.31
          - type: precision_at_5
            value: 24.548000000000002
          - type: recall_at_1
            value: 70.476
          - type: recall_at_10
            value: 95.3
          - type: recall_at_100
            value: 99.46000000000001
          - type: recall_at_1000
            value: 99.96000000000001
          - type: recall_at_3
            value: 87.057
          - type: recall_at_5
            value: 91.739
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 55.36775089400664
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 60.05041008018361
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 4.743
          - type: map_at_10
            value: 12.171
          - type: map_at_100
            value: 14.174999999999999
          - type: map_at_1000
            value: 14.446
          - type: map_at_3
            value: 8.698
          - type: map_at_5
            value: 10.444
          - type: mrr_at_1
            value: 23.400000000000002
          - type: mrr_at_10
            value: 34.284
          - type: mrr_at_100
            value: 35.400999999999996
          - type: mrr_at_1000
            value: 35.451
          - type: mrr_at_3
            value: 31.167
          - type: mrr_at_5
            value: 32.946999999999996
          - type: ndcg_at_1
            value: 23.400000000000002
          - type: ndcg_at_10
            value: 20.169999999999998
          - type: ndcg_at_100
            value: 27.967
          - type: ndcg_at_1000
            value: 32.982
          - type: ndcg_at_3
            value: 19.308
          - type: ndcg_at_5
            value: 16.837
          - type: precision_at_1
            value: 23.400000000000002
          - type: precision_at_10
            value: 10.41
          - type: precision_at_100
            value: 2.162
          - type: precision_at_1000
            value: 0.338
          - type: precision_at_3
            value: 18.067
          - type: precision_at_5
            value: 14.78
          - type: recall_at_1
            value: 4.743
          - type: recall_at_10
            value: 21.098
          - type: recall_at_100
            value: 43.85
          - type: recall_at_1000
            value: 68.60000000000001
          - type: recall_at_3
            value: 10.993
          - type: recall_at_5
            value: 14.998000000000001
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 81.129376905658
          - type: cos_sim_spearman
            value: 74.18938626206575
          - type: euclidean_pearson
            value: 77.95192851803141
          - type: euclidean_spearman
            value: 74.18938626206575
          - type: manhattan_pearson
            value: 77.97718819383338
          - type: manhattan_spearman
            value: 74.20580317409417
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 78.36913772828827
          - type: cos_sim_spearman
            value: 73.22311186990363
          - type: euclidean_pearson
            value: 74.45263405031004
          - type: euclidean_spearman
            value: 73.22311186990363
          - type: manhattan_pearson
            value: 74.56201270071791
          - type: manhattan_spearman
            value: 73.26490493774821
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 84.79920796384403
          - type: cos_sim_spearman
            value: 84.77145185366201
          - type: euclidean_pearson
            value: 83.90638366191354
          - type: euclidean_spearman
            value: 84.77145185366201
          - type: manhattan_pearson
            value: 83.83788216629048
          - type: manhattan_spearman
            value: 84.70515987131665
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 83.18883765092875
          - type: cos_sim_spearman
            value: 79.9948128016449
          - type: euclidean_pearson
            value: 81.57436738666773
          - type: euclidean_spearman
            value: 79.9948128016449
          - type: manhattan_pearson
            value: 81.55274202648187
          - type: manhattan_spearman
            value: 79.99854975019382
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 86.89669110871021
          - type: cos_sim_spearman
            value: 87.26758456901442
          - type: euclidean_pearson
            value: 86.62614163641416
          - type: euclidean_spearman
            value: 87.26758456901442
          - type: manhattan_pearson
            value: 86.58584490012353
          - type: manhattan_spearman
            value: 87.20340001562076
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 81.983023415916
          - type: cos_sim_spearman
            value: 82.31169002657151
          - type: euclidean_pearson
            value: 81.52305092886222
          - type: euclidean_spearman
            value: 82.31169002657151
          - type: manhattan_pearson
            value: 81.63024996600281
          - type: manhattan_spearman
            value: 82.44579116264026
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 89.27779520541694
          - type: cos_sim_spearman
            value: 89.54137104681308
          - type: euclidean_pearson
            value: 88.99136079955996
          - type: euclidean_spearman
            value: 89.54137104681308
          - type: manhattan_pearson
            value: 88.95980417618277
          - type: manhattan_spearman
            value: 89.55178819334718
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 66.50806758829178
          - type: cos_sim_spearman
            value: 65.92675365587571
          - type: euclidean_pearson
            value: 67.09216876696559
          - type: euclidean_spearman
            value: 65.92675365587571
          - type: manhattan_pearson
            value: 67.37398716891478
          - type: manhattan_spearman
            value: 66.34811143508206
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 84.557575753862
          - type: cos_sim_spearman
            value: 83.95859527071087
          - type: euclidean_pearson
            value: 83.77287626715369
          - type: euclidean_spearman
            value: 83.95859527071087
          - type: manhattan_pearson
            value: 83.7898033034244
          - type: manhattan_spearman
            value: 83.94860981294184
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 79.90679624144718
          - type: mrr
            value: 94.33150183150182
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 56.81699999999999
          - type: map_at_10
            value: 67.301
          - type: map_at_100
            value: 67.73599999999999
          - type: map_at_1000
            value: 67.757
          - type: map_at_3
            value: 64.865
          - type: map_at_5
            value: 66.193
          - type: mrr_at_1
            value: 59.667
          - type: mrr_at_10
            value: 68.324
          - type: mrr_at_100
            value: 68.66
          - type: mrr_at_1000
            value: 68.676
          - type: mrr_at_3
            value: 66.556
          - type: mrr_at_5
            value: 67.472
          - type: ndcg_at_1
            value: 59.667
          - type: ndcg_at_10
            value: 71.982
          - type: ndcg_at_100
            value: 74.149
          - type: ndcg_at_1000
            value: 74.60799999999999
          - type: ndcg_at_3
            value: 67.796
          - type: ndcg_at_5
            value: 69.64099999999999
          - type: precision_at_1
            value: 59.667
          - type: precision_at_10
            value: 9.633
          - type: precision_at_100
            value: 1.08
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 26.889000000000003
          - type: precision_at_5
            value: 17.467
          - type: recall_at_1
            value: 56.81699999999999
          - type: recall_at_10
            value: 85.18900000000001
          - type: recall_at_100
            value: 95.6
          - type: recall_at_1000
            value: 99
          - type: recall_at_3
            value: 73.617
          - type: recall_at_5
            value: 78.444
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.83465346534653
          - type: cos_sim_ap
            value: 95.93387984443646
          - type: cos_sim_f1
            value: 91.49261334691798
          - type: cos_sim_precision
            value: 93.25025960539979
          - type: cos_sim_recall
            value: 89.8
          - type: dot_accuracy
            value: 99.83465346534653
          - type: dot_ap
            value: 95.93389375761485
          - type: dot_f1
            value: 91.49261334691798
          - type: dot_precision
            value: 93.25025960539979
          - type: dot_recall
            value: 89.8
          - type: euclidean_accuracy
            value: 99.83465346534653
          - type: euclidean_ap
            value: 95.93389375761487
          - type: euclidean_f1
            value: 91.49261334691798
          - type: euclidean_precision
            value: 93.25025960539979
          - type: euclidean_recall
            value: 89.8
          - type: manhattan_accuracy
            value: 99.83564356435643
          - type: manhattan_ap
            value: 95.89877504534601
          - type: manhattan_f1
            value: 91.53061224489795
          - type: manhattan_precision
            value: 93.4375
          - type: manhattan_recall
            value: 89.7
          - type: max_accuracy
            value: 99.83564356435643
          - type: max_ap
            value: 95.93389375761487
          - type: max_f1
            value: 91.53061224489795
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 62.2780055191805
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 33.94461701798904
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 49.865789666749535
          - type: mrr
            value: 50.61783804430863
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 29.97703436199298
          - type: cos_sim_spearman
            value: 30.71880290978946
          - type: dot_pearson
            value: 29.977036284086818
          - type: dot_spearman
            value: 30.71880290978946
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.22799999999999998
          - type: map_at_10
            value: 1.559
          - type: map_at_100
            value: 8.866
          - type: map_at_1000
            value: 23.071
          - type: map_at_3
            value: 0.592
          - type: map_at_5
            value: 0.906
          - type: mrr_at_1
            value: 84
          - type: mrr_at_10
            value: 88.567
          - type: mrr_at_100
            value: 88.748
          - type: mrr_at_1000
            value: 88.748
          - type: mrr_at_3
            value: 87.667
          - type: mrr_at_5
            value: 88.067
          - type: ndcg_at_1
            value: 73
          - type: ndcg_at_10
            value: 62.202999999999996
          - type: ndcg_at_100
            value: 49.66
          - type: ndcg_at_1000
            value: 48.760999999999996
          - type: ndcg_at_3
            value: 67.52
          - type: ndcg_at_5
            value: 64.80799999999999
          - type: precision_at_1
            value: 84
          - type: precision_at_10
            value: 65.4
          - type: precision_at_100
            value: 51.72
          - type: precision_at_1000
            value: 22.014
          - type: precision_at_3
            value: 74
          - type: precision_at_5
            value: 69.19999999999999
          - type: recall_at_1
            value: 0.22799999999999998
          - type: recall_at_10
            value: 1.7680000000000002
          - type: recall_at_100
            value: 12.581999999999999
          - type: recall_at_1000
            value: 46.883
          - type: recall_at_3
            value: 0.618
          - type: recall_at_5
            value: 0.9690000000000001
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 1.295
          - type: map_at_10
            value: 7.481
          - type: map_at_100
            value: 13.120999999999999
          - type: map_at_1000
            value: 14.863999999999999
          - type: map_at_3
            value: 3.266
          - type: map_at_5
            value: 4.662
          - type: mrr_at_1
            value: 14.285999999999998
          - type: mrr_at_10
            value: 31.995
          - type: mrr_at_100
            value: 33.415
          - type: mrr_at_1000
            value: 33.432
          - type: mrr_at_3
            value: 27.551
          - type: mrr_at_5
            value: 30.306
          - type: ndcg_at_1
            value: 11.224
          - type: ndcg_at_10
            value: 19.166
          - type: ndcg_at_100
            value: 31.86
          - type: ndcg_at_1000
            value: 44.668
          - type: ndcg_at_3
            value: 17.371
          - type: ndcg_at_5
            value: 18.567
          - type: precision_at_1
            value: 14.285999999999998
          - type: precision_at_10
            value: 18.98
          - type: precision_at_100
            value: 7.041
          - type: precision_at_1000
            value: 1.555
          - type: precision_at_3
            value: 19.728
          - type: precision_at_5
            value: 20.816000000000003
          - type: recall_at_1
            value: 1.295
          - type: recall_at_10
            value: 14.482000000000001
          - type: recall_at_100
            value: 45.149
          - type: recall_at_1000
            value: 84.317
          - type: recall_at_3
            value: 4.484
          - type: recall_at_5
            value: 7.7170000000000005
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 72.96340000000001
          - type: ap
            value: 15.62835559397026
          - type: f1
            value: 56.42561616707867
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 55.280135823429546
          - type: f1
            value: 55.61428067547153
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 45.426677723253555
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 84.57411933003517
          - type: cos_sim_ap
            value: 69.68254951354992
          - type: cos_sim_f1
            value: 65.05232416646386
          - type: cos_sim_precision
            value: 60.36585365853659
          - type: cos_sim_recall
            value: 70.52770448548813
          - type: dot_accuracy
            value: 84.57411933003517
          - type: dot_ap
            value: 69.68256519978905
          - type: dot_f1
            value: 65.05232416646386
          - type: dot_precision
            value: 60.36585365853659
          - type: dot_recall
            value: 70.52770448548813
          - type: euclidean_accuracy
            value: 84.57411933003517
          - type: euclidean_ap
            value: 69.6825655240522
          - type: euclidean_f1
            value: 65.05232416646386
          - type: euclidean_precision
            value: 60.36585365853659
          - type: euclidean_recall
            value: 70.52770448548813
          - type: manhattan_accuracy
            value: 84.5502771651666
          - type: manhattan_ap
            value: 69.61700491283233
          - type: manhattan_f1
            value: 64.83962148211872
          - type: manhattan_precision
            value: 60.68553025074765
          - type: manhattan_recall
            value: 69.6042216358839
          - type: max_accuracy
            value: 84.57411933003517
          - type: max_ap
            value: 69.6825655240522
          - type: max_f1
            value: 65.05232416646386
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 88.80350836341057
          - type: cos_sim_ap
            value: 85.41051415803449
          - type: cos_sim_f1
            value: 77.99305633329602
          - type: cos_sim_precision
            value: 75.70113776360607
          - type: cos_sim_recall
            value: 80.42808746535263
          - type: dot_accuracy
            value: 88.80350836341057
          - type: dot_ap
            value: 85.41051488820463
          - type: dot_f1
            value: 77.99305633329602
          - type: dot_precision
            value: 75.70113776360607
          - type: dot_recall
            value: 80.42808746535263
          - type: euclidean_accuracy
            value: 88.80350836341057
          - type: euclidean_ap
            value: 85.41051374760137
          - type: euclidean_f1
            value: 77.99305633329602
          - type: euclidean_precision
            value: 75.70113776360607
          - type: euclidean_recall
            value: 80.42808746535263
          - type: manhattan_accuracy
            value: 88.74529436876625
          - type: manhattan_ap
            value: 85.38380242074525
          - type: manhattan_f1
            value: 78.02957839746892
          - type: manhattan_precision
            value: 74.71466816964914
          - type: manhattan_recall
            value: 81.65229442562365
          - type: max_accuracy
            value: 88.80350836341057
          - type: max_ap
            value: 85.41051488820463
          - type: max_f1
            value: 78.02957839746892

nomic-embed-text-v1-unsupervised: A Reproducible Long Context (8192) Text Embedder

nomic-embed-text-v1-unsupervised is 8192 context length text encoder. This is a checkpoint after contrastive pretraining from multi-stage contrastive training of the final model. The purpose of releasing this checkpoint is to open-source training artifacts from our Nomic Embed Text tech report here

If you want to use a model to extract embeddings, we suggest using nomic-embed-text-v1.

Join the Nomic Community