Update Transformers.js example code
#4
by
Xenova
HF staff
- opened
README.md
CHANGED
@@ -2733,14 +2733,20 @@ The model natively supports scaling of the sequence length past 2048 tokens. To
|
|
2733 |
import { pipeline } from '@xenova/transformers';
|
2734 |
|
2735 |
// Create a feature extraction pipeline
|
2736 |
-
const extractor = await pipeline('feature-extraction', 'nomic-ai/nomic-embed-text-v1', {
|
2737 |
quantized: false, // Comment out this line to use the quantized version
|
2738 |
});
|
2739 |
|
|
|
|
|
|
|
2740 |
// Compute sentence embeddings
|
2741 |
-
|
2742 |
-
|
2743 |
-
|
|
|
|
|
|
|
2744 |
```
|
2745 |
|
2746 |
# Join the Nomic Community
|
|
|
2733 |
import { pipeline } from '@xenova/transformers';
|
2734 |
|
2735 |
// Create a feature extraction pipeline
|
2736 |
+
const extractor = await pipeline('feature-extraction', 'nomic-ai/nomic-embed-text-v1.5', {
|
2737 |
quantized: false, // Comment out this line to use the quantized version
|
2738 |
});
|
2739 |
|
2740 |
+
// Define sentences
|
2741 |
+
const texts = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?'];
|
2742 |
+
|
2743 |
// Compute sentence embeddings
|
2744 |
+
let embeddings = await extractor(texts, { pooling: 'mean' });
|
2745 |
+
console.log(embeddings); // Tensor of shape [2, 768]
|
2746 |
+
|
2747 |
+
const matryoshka_dim = 512;
|
2748 |
+
embeddings = embeddings.slice(null, [0, matryoshka_dim]).normalize(2, -1);
|
2749 |
+
console.log(embeddings); // Tensor of shape [2, 512]
|
2750 |
```
|
2751 |
|
2752 |
# Join the Nomic Community
|