Consider using noneUsername/saiga_nemo_12b-W8A8-Dynamic-Per-Token-better. I tweaked the quantization parameters to get better results.

vllm (pretrained=/root/autodl-tmp/saiga_nemo_12b,add_bos_token=true,tensor_parallel_size=2,max_model_len=2048), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: auto

Tasks Version Filter n-shot Metric Value Stderr
gsm8k 3 flexible-extract 5 exact_match ↑ 0.808 ± 0.0250
strict-match 5 exact_match ↑ 0.760 ± 0.0271

vllm (pretrained=/root/autodl-tmp/output,add_bos_token=true,tensor_parallel_size=2,max_model_len=2048,dtype=bfloat16), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: auto

Tasks Version Filter n-shot Metric Value Stderr
gsm8k 3 flexible-extract 5 exact_match ↑ 0.792 ± 0.0257
strict-match 5 exact_match ↑ 0.768 ± 0.0268
Downloads last month
15
Safetensors
Model size
12.2B params
Tensor type
BF16
·
I8
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for noneUsername/saiga_nemo_12b-W8A8-Dynamic-Per-Token

Finetuned
(4)
this model