gte-base-zh-finetuned-main_rev_rate

This model is a fine-tuned version of thenlper/gte-base-zh on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3443
  • Accuracy: 0.0807
  • F1: 0.0713

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.3784 1.0 85 0.3260 0.0998 0.0181
0.3258 2.0 170 0.3268 0.0913 0.0153
0.3256 3.0 255 0.3271 0.0913 0.0153
0.3255 4.0 340 0.3262 0.1040 0.0305
0.3255 5.0 425 0.3266 0.0998 0.0246
0.3248 6.0 510 0.3257 0.0955 0.0489
0.3246 7.0 595 0.3263 0.1104 0.0566
0.3233 8.0 680 0.3272 0.1062 0.0593
0.3206 9.0 765 0.3287 0.1146 0.0754
0.3171 10.0 850 0.3324 0.0977 0.0686
0.3113 11.0 935 0.3321 0.0892 0.0809
0.3021 12.0 1020 0.3357 0.0977 0.0800
0.2954 13.0 1105 0.3395 0.0828 0.0750
0.2872 14.0 1190 0.3428 0.0913 0.0803
0.2821 15.0 1275 0.3443 0.0807 0.0713

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
102M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nop1006/gte-base-zh-finetuned-main_rev_rate

Finetuned
(2)
this model