BiRefNet / README.md
not-lain's picture
Update README.md
8cc6114 verified
---
library_name: birefnet
tags:
- background-removal
- mask-generation
- Dichotomous Image Segmentation
- Camouflaged Object Detection
- Salient Object Detection
- pytorch_model_hub_mixin
- model_hub_mixin
repo_url: https://github.com/ZhengPeng7/BiRefNet
pipeline_tag: image-to-image
license: mit
---
<h1 align="center">Bilateral Reference for High-Resolution Dichotomous Image Segmentation</h1>
<div align='center'>
<a href='https://scholar.google.com/citations?user=TZRzWOsAAAAJ' target='_blank'><strong>Peng Zheng</strong></a><sup> 1,4,5,6</sup>,&thinsp;
<a href='https://scholar.google.com/citations?user=0uPb8MMAAAAJ' target='_blank'><strong>Dehong Gao</strong></a><sup> 2</sup>,&thinsp;
<a href='https://scholar.google.com/citations?user=kakwJ5QAAAAJ' target='_blank'><strong>Deng-Ping Fan</strong></a><sup> 1*</sup>,&thinsp;
<a href='https://scholar.google.com/citations?user=9cMQrVsAAAAJ' target='_blank'><strong>Li Liu</strong></a><sup> 3</sup>,&thinsp;
<a href='https://scholar.google.com/citations?user=qQP6WXIAAAAJ' target='_blank'><strong>Jorma Laaksonen</strong></a><sup> 4</sup>,&thinsp;
<a href='https://scholar.google.com/citations?user=pw_0Z_UAAAAJ' target='_blank'><strong>Wanli Ouyang</strong></a><sup> 5</sup>,&thinsp;
<a href='https://scholar.google.com/citations?user=stFCYOAAAAAJ' target='_blank'><strong>Nicu Sebe</strong></a><sup> 6</sup>
</div>
<div align='center'>
<sup>1 </sup>Nankai University&ensp; <sup>2 </sup>Northwestern Polytechnical University&ensp; <sup>3 </sup>National University of Defense Technology&ensp; <sup>4 </sup>Aalto University&ensp; <sup>5 </sup>Shanghai AI Laboratory&ensp; <sup>6 </sup>University of Trento&ensp;
</div>
<div align="center" style="display: flex; justify-content: center; flex-wrap: wrap;">
<a href='https://www.sciopen.com/article/pdf/10.26599/AIR.2024.9150038.pdf'><img src='https://img.shields.io/badge/Journal-Paper-red'></a>&ensp;
<a href='https://arxiv.org/pdf/2401.03407'><img src='https://img.shields.io/badge/arXiv-BiRefNet-red'></a>&ensp;
<a href='https://drive.google.com/file/d/1aBnJ_R9lbnC2dm8dqD0-pzP2Cu-U1Xpt/view?usp=drive_link'><img src='https://img.shields.io/badge/中文版-BiRefNet-red'></a>&ensp;
<a href='https://www.birefnet.top'><img src='https://img.shields.io/badge/Page-BiRefNet-red'></a>&ensp;
<a href='https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM'><img src='https://img.shields.io/badge/Drive-Stuff-green'></a>&ensp;
<a href='LICENSE'><img src='https://img.shields.io/badge/License-MIT-yellow'></a>&ensp;
<a href='https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Spaces-BiRefNet-blue'></a>&ensp;
<a href='https://huggingface.co/ZhengPeng7/BiRefNet'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Models-BiRefNet-blue'></a>&ensp;
<a href='https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link'><img src='https://img.shields.io/badge/Single_Image_Inference-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a>&ensp;
<a href='https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S'><img src='https://img.shields.io/badge/Inference_&_Evaluation-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a>&ensp;
</div>
| *DIS-Sample_1* | *DIS-Sample_2* |
| :------------------------------: | :-------------------------------: |
| <img src="https://drive.google.com/thumbnail?id=1ItXaA26iYnE8XQ_GgNLy71MOWePoS2-g&sz=w400" /> | <img src="https://drive.google.com/thumbnail?id=1Z-esCujQF_uEa_YJjkibc3NUrW4aR_d4&sz=w400" /> |
This repo is the official implementation of "[**Bilateral Reference for High-Resolution Dichotomous Image Segmentation**](https://arxiv.org/pdf/2401.03407.pdf)" (___CAAI AIR 2024___).
Visit our GitHub repo: [https://github.com/ZhengPeng7/BiRefNet](https://github.com/ZhengPeng7/BiRefNet) for more details -- **codes**, **docs**, and **model zoo**!
## How to use
### 0. Install Packages:
```
pip install -qr https://raw.githubusercontent.com/ZhengPeng7/BiRefNet/main/requirements.txt
```
### 1. Load BiRefNet:
#### Use codes + weights from HuggingFace
> Only use the weights on HuggingFace -- Pro: No need to download BiRefNet codes manually; Con: Codes on HuggingFace might not be latest version (I'll try to keep them always latest).
```python
# Load BiRefNet with weights
from transformers import AutoModelForImageSegmentation
birefnet = AutoModelForImageSegmentation.from_pretrained('ZhengPeng7/BiRefNet', trust_remote_code=True)
```
#### Use codes from GitHub + weights from HuggingFace
> Only use the weights on HuggingFace -- Pro: codes are always latest; Con: Need to clone the BiRefNet repo from my GitHub.
```shell
# Download codes
git clone https://github.com/ZhengPeng7/BiRefNet.git
cd BiRefNet
```
```python
# Use codes locally
from models.birefnet import BiRefNet
# Load weights from Hugging Face Models
birefnet = BiRefNet.from_pretrained('ZhengPeng7/BiRefNet')
```
#### Use codes from GitHub + weights from local space
> Only use the weights and codes both locally.
```python
# Use codes and weights locally
import torch
from utils import check_state_dict
birefnet = BiRefNet(bb_pretrained=False)
state_dict = torch.load(PATH_TO_WEIGHT, map_location='cpu')
state_dict = check_state_dict(state_dict)
birefnet.load_state_dict(state_dict)
```
#### Use the loaded BiRefNet for inference
```python
# Imports
from PIL import Image
import matplotlib.pyplot as plt
import torch
from torchvision import transforms
from models.birefnet import BiRefNet
birefnet = ... # -- BiRefNet should be loaded with codes above, either way.
torch.set_float32_matmul_precision(['high', 'highest'][0])
birefnet.to('cuda')
birefnet.eval()
def extract_object(birefnet, imagepath):
# Data settings
image_size = (1024, 1024)
transform_image = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image = Image.open(imagepath)
input_images = transform_image(image).unsqueeze(0).to('cuda')
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image.size)
image.putalpha(mask)
return image, mask
# Visualization
plt.axis("off")
plt.imshow(extract_object(birefnet, imagepath='PATH-TO-YOUR_IMAGE.jpg')[0])
plt.show()
```
> This BiRefNet for standard dichotomous image segmentation (DIS) is trained on **DIS-TR** and validated on **DIS-TEs and DIS-VD**.
## This repo holds the official model weights of "[<ins>Bilateral Reference for High-Resolution Dichotomous Image Segmentation</ins>](https://arxiv.org/pdf/2401.03407)" (_CAAI AIR 2024_).
This repo contains the weights of BiRefNet proposed in our paper, which has achieved the SOTA performance on three tasks (DIS, HRSOD, and COD).
Go to my GitHub page for BiRefNet codes and the latest updates: https://github.com/ZhengPeng7/BiRefNet :)
#### Try our online demos for inference:
+ Online **Image Inference** on Colab: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link)
+ **Online Inference with GUI on Hugging Face** with adjustable resolutions: [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo)
+ **Inference and evaluation** of your given weights: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S)
<img src="https://drive.google.com/thumbnail?id=12XmDhKtO1o2fEvBu4OE4ULVB2BK0ecWi&sz=w1080" />
## Acknowledgement:
+ Many thanks to @fal for their generous support on GPU resources for training better BiRefNet models.
+ Many thanks to @not-lain for his help on the better deployment of our BiRefNet model on HuggingFace.
## Citation
```
@article{BiRefNet,
title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation},
author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu},
journal={CAAI Artificial Intelligence Research},
year={2024}
}
```