metadata
language:
- en
license: apache-2.0
datasets:
- nov3630/Data4RLCoder
Model Description
RLRetriever is a retriever for repository-level code completion which disregard seemingly useful yet ultimately unhelpful reference code snippets, focusing on those more likely to contribute to accurate code generation.
- Developed by: Sun Yat-sen University & Huawei Cloud Computing Technologies Co., Ltd.
- Shared by [Optional]: Hugging Face
- Model type: Feature Engineering
- Language(s) (NLP): en
- License: Apache-2.0
- Related Models:
- Parent Model: RoBERTa
- Resources for more information:
Citation
BibTeX:
@misc{wang2024rlcoderreinforcementlearningrepositorylevel,
title={RLCoder: Reinforcement Learning for Repository-Level Code Completion},
author={Yanlin Wang and Yanli Wang and Daya Guo and Jiachi Chen and Ruikai Zhang and Yuchi Ma and Zibin Zheng},
year={2024},
eprint={2407.19487},
archivePrefix={arXiv},
primaryClass={cs.SE},
url={https://arxiv.org/abs/2407.19487},
}
Get Started
Use the code below to get started with the model.
Click to expand
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("nov3630/RLRetriever")
model = AutoModel.from_pretrained("nov3630/RLRetriever")