llama3-8b-instruct-qlora-mini
This model is a fine-tuned version of LoftQ/Meta-Llama-3-8B-Instruct-4bit-64rank on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8668
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.3909 | 1.0 | 53 | 1.5473 |
2.1937 | 2.0 | 106 | 1.2690 |
2.0915 | 3.0 | 159 | 1.0977 |
1.9927 | 4.0 | 212 | 1.0320 |
1.9058 | 5.0 | 265 | 1.0046 |
1.8032 | 6.0 | 318 | 0.9885 |
1.6688 | 7.0 | 371 | 0.9754 |
1.5215 | 8.0 | 424 | 0.9745 |
1.3617 | 9.0 | 477 | 0.9640 |
1.2074 | 10.0 | 530 | 0.9579 |
1.0429 | 11.0 | 583 | 0.9441 |
0.9013 | 12.0 | 636 | 0.9355 |
0.7969 | 13.0 | 689 | 0.9278 |
0.7092 | 14.0 | 742 | 0.9171 |
0.6272 | 15.0 | 795 | 0.9070 |
0.5688 | 16.0 | 848 | 0.9052 |
0.5128 | 17.0 | 901 | 0.8942 |
0.469 | 18.0 | 954 | 0.8894 |
0.4294 | 19.0 | 1007 | 0.8871 |
0.3953 | 20.0 | 1060 | 0.8807 |
0.371 | 21.0 | 1113 | 0.8756 |
0.3533 | 22.0 | 1166 | 0.8750 |
0.3335 | 23.0 | 1219 | 0.8730 |
0.3212 | 24.0 | 1272 | 0.8699 |
0.3108 | 25.0 | 1325 | 0.8687 |
0.3089 | 26.0 | 1378 | 0.8676 |
0.3031 | 27.0 | 1431 | 0.8678 |
0.3014 | 28.0 | 1484 | 0.8675 |
0.3013 | 29.0 | 1537 | 0.8666 |
0.2978 | 30.0 | 1590 | 0.8668 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for nrishabh/llama3-8b-instruct-qlora-mini
Base model
LoftQ/Meta-Llama-3-8B-Instruct-4bit-64rank