llama3-8b-instruct-qlora-mini

This model is a fine-tuned version of LoftQ/Meta-Llama-3-8B-Instruct-4bit-64rank on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8668

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss
2.3909 1.0 53 1.5473
2.1937 2.0 106 1.2690
2.0915 3.0 159 1.0977
1.9927 4.0 212 1.0320
1.9058 5.0 265 1.0046
1.8032 6.0 318 0.9885
1.6688 7.0 371 0.9754
1.5215 8.0 424 0.9745
1.3617 9.0 477 0.9640
1.2074 10.0 530 0.9579
1.0429 11.0 583 0.9441
0.9013 12.0 636 0.9355
0.7969 13.0 689 0.9278
0.7092 14.0 742 0.9171
0.6272 15.0 795 0.9070
0.5688 16.0 848 0.9052
0.5128 17.0 901 0.8942
0.469 18.0 954 0.8894
0.4294 19.0 1007 0.8871
0.3953 20.0 1060 0.8807
0.371 21.0 1113 0.8756
0.3533 22.0 1166 0.8750
0.3335 23.0 1219 0.8730
0.3212 24.0 1272 0.8699
0.3108 25.0 1325 0.8687
0.3089 26.0 1378 0.8676
0.3031 27.0 1431 0.8678
0.3014 28.0 1484 0.8675
0.3013 29.0 1537 0.8666
0.2978 30.0 1590 0.8668

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for nrishabh/llama3-8b-instruct-qlora-mini

Adapter
(4)
this model