JacobLinCool's picture
End of training
dc0a2ce verified
|
raw
history blame
2.24 kB
metadata
library_name: peft
language:
  - en
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - wft
  - whisper
  - automatic-speech-recognition
  - audio
  - speech
  - generated_from_trainer
datasets:
  - ntnu-smil/lttc-augmented-ft-1
metrics:
  - wer
model-index:
  - name: whisper-large-v3-turbo-augmented
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: ntnu-smil/lttc-augmented-ft-1
          type: ntnu-smil/lttc-augmented-ft-1
        metrics:
          - type: wer
            value: 32.36001374098248
            name: Wer

whisper-large-v3-turbo-augmented

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the ntnu-smil/lttc-augmented-ft-1 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3566
  • Wer: 32.3600
  • Cer: 18.4747

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.0483 1.0 190 1.2801 35.8640 20.7045
0.0503 2.0 380 1.3510 32.5318 20.3283
0.0033 3.0 570 1.2776 39.3336 22.9891
0.0007 4.0 760 1.3057 32.6692 18.6594
0.0002 5.0 950 1.3566 32.3600 18.4747

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.0
  • Pytorch 2.2.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.21.0