Update LMFlow support

#6
Files changed (1) hide show
  1. README.md +35 -0
README.md CHANGED
@@ -111,6 +111,41 @@ print(f"Model response: {response}")
111
 
112
  ```
113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
  ## Evaluation
115
  We use [`LM Evaluation Harness`](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the model. The evaluation commands are as follows:
116
 
 
111
 
112
  ```
113
 
114
+ ## Finetuning Hymba
115
+
116
+
117
+ [LMFlow](https://github.com/OptimalScale/LMFlow) is a complete pipeline for fine-tuning large language models.
118
+ The following steps provide an example of how to fine-tune the `Hymba-1.5B-Base` models using LMFlow.
119
+
120
+ 1. Using Docker
121
+
122
+ ```
123
+ docker pull ghcr.io/tilmto/hymba:v1
124
+ docker run --gpus all -v /home/$USER:/home/$USER -it ghcr.io/tilmto/hymba:v1 bash
125
+ ```
126
+ 2. Install LMFlow
127
+
128
+ ```
129
+ git clone https://github.com/OptimalScale/LMFlow.git
130
+ cd LMFlow
131
+ conda create -n lmflow python=3.9 -y
132
+ conda activate lmflow
133
+ conda install mpi4py
134
+ pip install -e .
135
+ ```
136
+
137
+ 3. Fine-tune the model using the following command.
138
+
139
+ ```
140
+ cd LMFlow
141
+ bash ./scripts/run_finetune_hymba.sh
142
+ ```
143
+
144
+ With LMFlow, you can also fine-tune the model on your custom dataset. The only thing you need to do is transform your dataset into the [LMFlow data format](https://optimalscale.github.io/LMFlow/examples/DATASETS.html).
145
+ In addition to full-finetuniing, you can also fine-tune hymba efficiently with [DoRA](https://arxiv.org/html/2402.09353v4), [LoRA](https://github.com/OptimalScale/LMFlow?tab=readme-ov-file#lora), [LISA](https://github.com/OptimalScale/LMFlow?tab=readme-ov-file#lisa), [Flash Attention](https://github.com/OptimalScale/LMFlow/blob/main/readme/flash_attn2.md), and other acceleration techniques.
146
+ For more details, please refer to the [LMFlow for Hymba](https://github.com/OptimalScale/LMFlow/tree/main/experimental/Hymba) documentation.
147
+
148
+
149
  ## Evaluation
150
  We use [`LM Evaluation Harness`](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the model. The evaluation commands are as follows:
151