|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Callable, Dict, Iterable, List, NamedTuple, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from timm.models import create_model, VisionTransformer |
|
|
|
from .enable_cpe_support import enable_cpe |
|
from .input_conditioner import InputConditioner |
|
from .adaptor_base import AdaptorBase, RadioOutput, AdaptorInput |
|
from . import eradio_model |
|
from .enable_spectral_reparam import configure_spectral_reparam_from_args |
|
from .feature_normalizer import FeatureNormalizer, IntermediateFeatureNormalizer |
|
|
|
|
|
class Resolution(NamedTuple): |
|
height: int |
|
width: int |
|
|
|
|
|
class RADIOModel(nn.Module): |
|
def __init__( |
|
self, |
|
model: nn.Module, |
|
input_conditioner: InputConditioner, |
|
patch_size: int, |
|
max_resolution: int, |
|
preferred_resolution: Resolution, |
|
summary_idxs: Optional[torch.Tensor] = None, |
|
window_size: int = None, |
|
adaptors: Dict[str, AdaptorBase] = None, |
|
feature_normalizer: Optional[FeatureNormalizer] = None, |
|
inter_feature_normalizer: Optional[IntermediateFeatureNormalizer] = None, |
|
): |
|
super().__init__() |
|
|
|
self.model = model |
|
self.input_conditioner = input_conditioner |
|
if summary_idxs is not None: |
|
self.register_buffer('summary_idxs', summary_idxs) |
|
else: |
|
self.summary_idxs = None |
|
|
|
self._preferred_resolution = preferred_resolution |
|
self._patch_size = patch_size |
|
self._max_resolution = max_resolution |
|
self._window_size = window_size |
|
|
|
adaptors = adaptors or dict() |
|
self.adaptors = nn.ModuleDict(adaptors) |
|
|
|
if feature_normalizer is None: |
|
feature_normalizer = nn.Identity() |
|
self.feature_normalizer = feature_normalizer |
|
self.inter_feature_normalizer = inter_feature_normalizer |
|
|
|
@property |
|
def num_summary_tokens(self) -> int: |
|
if hasattr(self.model, 'num_summary_tokens'): |
|
return self.model.num_summary_tokens |
|
|
|
patch_gen = getattr(self.model, "patch_generator", None) |
|
if patch_gen is not None: |
|
return patch_gen.num_skip |
|
elif self.model.global_pool == 'avg': |
|
return 0 |
|
return 1 |
|
|
|
@property |
|
def num_cls_tokens(self) -> int: |
|
if hasattr(self.model, 'num_cls_tokens'): |
|
return self.model.num_cls_tokens |
|
|
|
patch_gen = getattr(self.model, 'patch_generator', None) |
|
if patch_gen is not None: |
|
return patch_gen.num_cls_tokens |
|
elif self.model.global_pool == 'avg': |
|
return 0 |
|
return 1 |
|
|
|
@property |
|
def patch_size(self) -> int: |
|
if self._patch_size is not None: |
|
return self._patch_size |
|
if hasattr(self.model, "patch_size"): |
|
return self.model.patch_size |
|
patch_gen = getattr(self.model, "patch_generator", None) |
|
if patch_gen is not None: |
|
return patch_gen.patch_size |
|
return None |
|
|
|
@property |
|
def max_resolution(self) -> int: |
|
return self._max_resolution |
|
|
|
@property |
|
def preferred_resolution(self) -> Resolution: |
|
return self._preferred_resolution |
|
|
|
@property |
|
def window_size(self) -> int: |
|
return self._window_size |
|
|
|
@property |
|
def min_resolution_step(self) -> int: |
|
res = self.patch_size |
|
if self.window_size is not None: |
|
res *= self.window_size |
|
return res |
|
|
|
@property |
|
def blocks(self) -> Iterable[nn.Module]: |
|
blocks = getattr(self.model, 'blocks', None) |
|
if blocks is not None: |
|
return blocks |
|
return None |
|
|
|
@property |
|
def embed_dim(self) -> int: |
|
return self.model.embed_dim |
|
|
|
def make_preprocessor_external(self) -> Callable[[torch.Tensor], torch.Tensor]: |
|
ret = self.input_conditioner |
|
self.input_conditioner = nn.Identity() |
|
return ret |
|
|
|
def get_nearest_supported_resolution(self, height: int, width: int) -> Resolution: |
|
height = int(round(height / self.min_resolution_step) * self.min_resolution_step) |
|
width = int(round(width / self.min_resolution_step) * self.min_resolution_step) |
|
|
|
height = max(height, self.min_resolution_step) |
|
width = max(width, self.min_resolution_step) |
|
|
|
return Resolution(height=height, width=width) |
|
|
|
def switch_to_deploy(self): |
|
fn = getattr(self.model, 'switch_to_deploy', None) |
|
if fn is not None: |
|
fn() |
|
|
|
def forward(self, x: torch.Tensor, feature_fmt: str = 'NLC') -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: |
|
''' |
|
Forward process for model. |
|
Args: |
|
x: Input tensor. Unless `make_preprocessor_external` has been called, then the dynamic range of `x` is expected to be `[0, 1]`, |
|
otherwise `x` is expected to be mean centered with unit standard deviation. |
|
feature_format: ['NLC', 'NCHW'] - The output format for the features. |
|
''' |
|
res_step = self.min_resolution_step |
|
if res_step is not None and (x.shape[-2] % res_step != 0 or x.shape[-1] % res_step != 0): |
|
raise ValueError('The input resolution must be a multiple of `self.min_resolution_step`. ' |
|
'`self.get_nearest_supported_resolution(<height>, <width>) is provided as a convenience API. ' |
|
f'Input: {x.shape[-2:]}, Nearest: {self.get_nearest_supported_resolution(*x.shape[-2:])}') |
|
|
|
x = self.input_conditioner(x) |
|
y = self.model.forward_features(x) |
|
ret = self._extract_final(x, y, feature_fmt=feature_fmt) |
|
return ret |
|
|
|
def _extract_final(self, x: torch.Tensor, y: torch.Tensor, feature_fmt: str = 'NLC'): |
|
if isinstance(self.model, VisionTransformer): |
|
patch_gen = getattr(self.model, "patch_generator", None) |
|
if patch_gen is not None: |
|
all_summary = y[:, : patch_gen.num_cls_tokens] |
|
if self.summary_idxs is not None: |
|
bb_summary = all_summary[:, self.summary_idxs] |
|
else: |
|
bb_summary = all_summary |
|
all_feat = y[:, patch_gen.num_skip :] |
|
elif self.model.global_pool == "avg": |
|
all_summary = y[:, self.model.num_prefix_tokens :].mean(dim=1) |
|
bb_summary = all_summary |
|
all_feat = y |
|
else: |
|
all_summary = y[:, 0] |
|
bb_summary = all_summary |
|
all_feat = y[:, 1:] |
|
elif isinstance(self.model, eradio_model.ERADIO): |
|
_, f = y |
|
all_feat = f.flatten(2).transpose(1, 2) |
|
all_summary = all_feat.mean(dim=1) |
|
bb_summary = all_summary |
|
elif isinstance(y, (list, tuple)): |
|
all_summary, all_feat = y |
|
bb_summary = all_summary |
|
else: |
|
all_summary = y[:, :self.num_cls_tokens] |
|
if self.summary_idxs is not None and all_summary.shape[1] > 1: |
|
if all_summary.shape[1] == 1: |
|
|
|
all_summary = all_summary.expand(-1, 128, -1) |
|
bb_summary = all_summary[:, self.summary_idxs] |
|
else: |
|
bb_summary = all_summary |
|
all_feat = y[:, self.num_summary_tokens:] |
|
|
|
all_feat = self.feature_normalizer(all_feat) |
|
|
|
if feature_fmt == 'NCHW': |
|
fmt_feat = (all_feat.reshape(all_feat.shape[0], x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size, all_feat.shape[2]) |
|
.permute(0, 3, 1, 2) |
|
) |
|
elif feature_fmt == 'NLC': |
|
fmt_feat = all_feat |
|
else: |
|
raise ValueError(f'Unsupported feature_fmt: {feature_fmt}. Must be one of ["NLC", "NCHW"]') |
|
|
|
ret = RadioOutput(bb_summary.flatten(1), fmt_feat) |
|
|
|
if self.adaptors: |
|
ret = dict(backbone=ret) |
|
for name, adaptor in self.adaptors.items(): |
|
if all_summary.ndim == 3: |
|
summary = all_summary[:, adaptor.head_idx] |
|
else: |
|
summary = all_summary |
|
ada_input = AdaptorInput(images=x, summary=summary.float(), features=all_feat, feature_fmt=feature_fmt, patch_size=self.patch_size) |
|
v = adaptor(ada_input).to(torch.float32) |
|
ret[name] = v |
|
|
|
return ret |
|
|
|
def forward_intermediates( |
|
self, |
|
x: torch.Tensor, |
|
indices: Optional[Union[int, List[int], Tuple[int]]] = None, |
|
return_prefix_tokens: bool = False, |
|
norm: bool = False, |
|
stop_early: bool = False, |
|
output_fmt: str = 'NCHW', |
|
intermediates_only: bool = False, |
|
aggregation: Optional[str] = "sparse", |
|
norm_alpha_scheme: Optional[str] = "post-alpha", |
|
) -> List[RadioOutput]: |
|
""" Forward features that returns intermediates. |
|
Args: |
|
x: Input image tensor |
|
indices: Take last n blocks if int, select matching indices if sequence |
|
return_prefix_tokens: Return both prefix and spatial intermediate tokens |
|
norm: Apply norm layer to all intermediates |
|
stop_early: Stop iterating over blocks when last desired intermediate hit |
|
output_fmt: Shape of intermediate feature outputs. Options: NCHW, NLC |
|
intermediates_only: Only return intermediate features |
|
aggregation: intermediate layer aggregation method (sparse or dense). |
|
Dense accumulation is done by averaging the features in each group. |
|
norm_alpha_scheme: apply alpha before ("pre-alpha") or after accumulation ("post-alpha"), or don't normalize ("none") |
|
Only affects dense aggregation |
|
Returns: |
|
List of RadioOutput objects. |
|
""" |
|
x = self.input_conditioner(x) |
|
intermediates = self.model.forward_intermediates( |
|
x, |
|
indices=indices, |
|
return_prefix_tokens=return_prefix_tokens, |
|
norm=norm, |
|
stop_early=stop_early, |
|
output_fmt=output_fmt, |
|
intermediates_only=intermediates_only, |
|
aggregation=aggregation, |
|
inter_feature_normalizer=self.inter_feature_normalizer, |
|
norm_alpha_scheme=norm_alpha_scheme, |
|
) |
|
|
|
if not intermediates_only: |
|
final, intermediates = intermediates |
|
|
|
def prepare_summary(summ: Optional[torch.Tensor]): |
|
if summ is None: |
|
return summ |
|
if self.summary_idxs is not None and summ.shape[1] > 1: |
|
summ = summ[:, self.summary_idxs] |
|
return summ.flatten(1) |
|
|
|
if return_prefix_tokens: |
|
radio_outputs = [ |
|
RadioOutput(prepare_summary(summary), features) |
|
for summary, features in intermediates |
|
] |
|
else: |
|
radio_outputs = intermediates |
|
|
|
if intermediates_only: |
|
return radio_outputs |
|
else: |
|
final = self._extract_final(x, final, feature_fmt=output_fmt) |
|
return final, radio_outputs |
|
|
|
|
|
def create_model_from_args(args) -> nn.Module: |
|
in_chans = 3 |
|
if args.in_chans is not None: |
|
in_chans = args.in_chans |
|
elif args.input_size is not None: |
|
in_chans = args.input_size[0] |
|
|
|
|
|
weight_init = args.model_kwargs.pop("weight_init", "skip") |
|
|
|
model = create_model( |
|
args.model, |
|
pretrained=args.pretrained, |
|
in_chans=in_chans, |
|
num_classes=args.num_classes, |
|
drop_rate=args.drop, |
|
drop_path_rate=args.drop_path, |
|
drop_block_rate=args.drop_block, |
|
global_pool=args.gp, |
|
bn_momentum=args.bn_momentum, |
|
bn_eps=args.bn_eps, |
|
scriptable=args.torchscript, |
|
checkpoint_path=args.initial_checkpoint, |
|
weight_init=weight_init, |
|
**args.model_kwargs, |
|
) |
|
|
|
if hasattr(model, 'norm') and not getattr(args, 'model_norm', False): |
|
model.norm = nn.Identity() |
|
|
|
model.head = nn.Identity() |
|
|
|
assert ( |
|
not args.cls_token_per_teacher or args.cpe_max_size is not None |
|
), "CPE must be enabled for multiple CLS tokens!" |
|
|
|
if args.cpe_max_size is not None: |
|
uq_teachers = set(t['name'] for t in args.teachers) |
|
enable_cpe( |
|
model, |
|
args.cpe_max_size, |
|
num_cls_tokens=len(uq_teachers) if args.cls_token_per_teacher else 1, |
|
register_multiple=getattr(args, 'register_multiple', None), |
|
num_registers=getattr(args, 'cpe_num_registers', None), |
|
) |
|
|
|
return model |
|
|