Model Overview

This is a multilingual text classification model that can enable data annotation, creation of domain-specific blends and the addition of metadata tags. The model classifies documents into one of 26 domain classes:

'Adult', 'Arts_and_Entertainment', 'Autos_and_Vehicles', 'Beauty_and_Fitness', 'Books_and_Literature', 'Business_and_Industrial', 'Computers_and_Electronics', 'Finance', 'Food_and_Drink', 'Games', 'Health', 'Hobbies_and_Leisure', 'Home_and_Garden', 'Internet_and_Telecom', 'Jobs_and_Education', 'Law_and_Government', 'News', 'Online_Communities', 'People_and_Society', 'Pets_and_Animals', 'Real_Estate', 'Science', 'Sensitive_Subjects', 'Shopping', 'Sports', 'Travel_and_Transportation'

It supports 52 languages (English and 51 other languages):

Code Language Name
ar Arabic
az Azerbaijani
bg Bulgarian
bn Bengali
ca Catalan
cs Czech
da Danish
de German
el Greek
es Spanish
et Estonian
fa Persian
fi Finnish
fr French
gl Galician
he Hebrew
hi Hindi
hr Croatian
hu Hungarian
hy Armenian
id Indonesian
is Icelandic
it Italian
ka Georgian
kk Kazakh
kn Kannada
ko Korean
lt Lithuanian
lv Latvian
mk Macedonian
ml Malayalam
mr Marathi
ne Nepali
nl Dutch
no Norwegian
pl Polish
pt Portuguese
ro Romanian
ru Russian
sk Slovak
sl Slovenian
sq Albanian
sr Serbian
sv Swedish
ta Tamil
tr Turkish
uk Ukrainian
ur Urdu
vi Vietnamese
ja Japanese
zh Chinese

License

This model is released under the NVIDIA Open Model License Agreement.

References

Model Architecture

  • The model architecture is Deberta V3 Base
  • Context length is 512 tokens

How To Use in NVIDIA NeMo Curator

NeMo Curator improves generative AI model accuracy by processing text, image, and video data at scale for training and customization. It also provides pre-built pipelines for generating synthetic data to customize and evaluate generative AI systems.

The inference code for this model is available through the NeMo Curator GitHub repository. Check out this example notebook to get started.

How to Use in Transformers

To use the multilingual domain classifier, use the following code:

import torch
from torch import nn
from transformers import AutoModel, AutoTokenizer, AutoConfig
from huggingface_hub import PyTorchModelHubMixin

class CustomModel(nn.Module, PyTorchModelHubMixin):
    def __init__(self, config):
        super(CustomModel, self).__init__()
        self.model = AutoModel.from_pretrained(config["base_model"])
        self.dropout = nn.Dropout(config["fc_dropout"])
        self.fc = nn.Linear(self.model.config.hidden_size, len(config["id2label"]))

    def forward(self, input_ids, attention_mask):
        features = self.model(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state
        dropped = self.dropout(features)
        outputs = self.fc(dropped)
        return torch.softmax(outputs[:, 0, :], dim=1)

# Setup configuration and model
config = AutoConfig.from_pretrained("nvidia/multilingual-domain-classifier")
tokenizer = AutoTokenizer.from_pretrained("nvidia/multilingual-domain-classifier")
model = CustomModel.from_pretrained("nvidia/multilingual-domain-classifier")
model.eval()

# Prepare and process inputs
text_samples = ["Los deportes son un dominio popular", "La política es un dominio popular"]
inputs = tokenizer(text_samples, return_tensors="pt", padding="longest", truncation=True)
outputs = model(inputs["input_ids"], inputs["attention_mask"])

# Predict and display results
predicted_classes = torch.argmax(outputs, dim=1)
predicted_domains = [config.id2label[class_idx.item()] for class_idx in predicted_classes.cpu().numpy()]
print(predicted_domains)
# ['Sports', 'News']

Input & Output

Input

  • Input Type: Text
  • Input Format: String
  • Input Parameters: 1D
  • Other Properties Related to Input: Token Limit of 512 tokens

Output

  • Output Type: Text Classifications
  • Output Format: String
  • Output Parameters: 1D
  • Other Properties Related to Output: None

The model takes one or several paragraphs of text as input. Example input:

最年少受賞者はエイドリアン・ブロディの29歳、最年少候補者はジャッキー・クーパーの9歳。最年長受賞者、最年長候補者は、アンソニー・ホプキンスの83歳。
最多受賞者は3回受賞のダニエル・デイ=ルイス。2回受賞経験者はスペンサー・トレイシー、フレドリック・マーチ、ゲイリー・クーパー、ダスティン・ホフマン、トム・ハンクス、ジャック・ニコルソン(助演男優賞も1回受賞している)、ショーン・ペン、アンソニー・ホプキンスの8人。なお、マーロン・ブランドも2度受賞したが、2度目の受賞を拒否している。最多候補者はスペンサー・トレイシー、ローレンス・オリヴィエの9回。
死後に受賞したのはピーター・フィンチが唯一。ほか、ジェームズ・ディーン、スペンサー・トレイシー、マッシモ・トロイージ、チャドウィック・ボーズマンが死後にノミネートされ、うち2回死後にノミネートされたのはディーンのみである。
非白人(黒人)で初めて受賞したのはシドニー・ポワチエであり、英語以外の演技で受賞したのはロベルト・ベニーニである。

The model outputs one of the 26 domain classes as the predicted domain for each input sample. Example output:

Arts_and_Entertainment 

Software Integration

  • Runtime Engine: Python 3.10 and NeMo Curator
  • Supported Hardware Microarchitecture Compatibility: NVIDIA GPU, Volta™ or higher (compute capability 7.0+), CUDA 12 (or above)
  • Preferred/Supported Operating System(s): Ubuntu 22.04/20.04

Training, Testing, and Evaluation Dataset

Training data

  • 1 million Common Crawl samples, labeled using Google Cloud’s Natural Language API
  • 500k Wikipedia articles, curated using Wikipedia-API

Training steps

  • Translate the English training data into 51 other languages. Each sample has 52 copies.
  • During training, randomly pick one of the 52 copies for each sample.
  • During validation, evaluate the model on validation set 52 times, to get the validation score for each language.

Evaluation

  • Metric: PR-AUC

PR-AUC by language: pr_auc_by_language

Inference

  • Engine: PyTorch
  • Test Hardware: V100

Ethical Considerations

NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.

Please report security vulnerabilities or NVIDIA AI Concerns here.

Downloads last month
548
Safetensors
Model size
278M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Collection including nvidia/multilingual-domain-classifier