language:
- hr
library_name: nemo
datasets:
- ParlaSpeech-HR v1.0
thumbnail: null
tags:
- automatic-speech-recognition
- speech
- audio
- CTC
- Conformer
- Transformer
- pytorch
- NeMo
- hf-asr-leaderboard
- Riva
license: cc-by-4.0
NVIDIA Conformer-CTC Large (Croatian)
This model transcribes speech in lowercase Croatian alphabet including spaces, and is trained on 1665 hours of Croatian speech data. It is a non-autoregressive "large" variant of Conformer, with around 120 million parameters. See the model architecture section and NeMo documentation for complete architecture details. It is also compatible with NVIDIA Riva for production-grade server deployments.
Usage
The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
To train, fine-tune or play with the model you will need to install NVIDIA NeMo. We recommend you install it after you've installed latest PyTorch version.
pip install nemo_toolkit['all']
Automatically instantiate the model
import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained("nvidia/stt_hr_conformer_ctc_large")
Transcribing using Python
Simply do:
asr_model.transcribe(['<your_audio>.wav'])
Transcribing many audio files
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
pretrained_name="nvidia/stt_hr_conformer_ctc_large"
audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
Input
This model accepts 16 kHz single-channel audio as input.
Output
This model provides transcribed speech as a string for a given audio sample.
Model Architecture
Conformer-CTC model is a non-autoregressive variant of Conformer model [1] for Automatic Speech Recognition which uses CTC loss/decoding instead of Transducer. You may find more info on the detail of this model here: Conformer-CTC Model.
Training
The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this example script and this base config.
The tokenizers for these models were built using the text transcripts of the train set with this script.
The vocabulary we use contains 27 characters:
[' ', 'a', 'b', 'c', 'č', 'ć', 'd', 'đ', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'r', 's', 'š', 't', 'u', 'v', 'z', 'ž']
Full config can be found inside the .nemo
files.
Datasets
All the models in this collection are trained on ParlaSpeech-HR v1.0 Croatian dataset, which contains around 1665 hours of training data after data cleaning, 2.2 hours of development and 2.3 hours of test data.
Performance
The list of the available models in this collection is shown in the following table. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding.
Version | Tokenizer | Vocabulary Size | Dev WER | Test WER | Train Dataset |
---|---|---|---|---|---|
1.11.0 | SentencePiece Unigram | 128 | 4.43 | 4.70 | ParlaSpeech-HR v1.0 |
You may use language models (LMs) and beam search to improve the accuracy of the models.
Limitations
Since the model is trained just on ParlaSpeech-HR v1.0 dataset, the performance of this model might degrade for speech which includes terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
Deployment with NVIDIA Riva
For the best real-time accuracy, latency, and throughput, deploy the model with NVIDIA Riva, an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, at the edge, and embedded. Additionally, Riva provides:
- World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours
- Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
- Streaming speech recognition, Kubernetes compatible scaling, and Enterprise-grade support
Check out Riva live demo.