akan-whisper-medium / README.md
nyarkssss's picture
Update README.md
ca5b4e6 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: akan-whisper-medium
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 65.37832712052841

akan-whisper-medium

This model is a fine-tuned version of akan-whisper-medium on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3225
  • Wer: 65.3783

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6326 7.5758 500 0.8675 71.1922
0.1649 15.1515 1000 0.8976 65.7903
0.0284 22.7273 1500 1.0661 66.8563
0.0067 30.3030 2000 1.1925 66.7517
0.0034 37.8788 2500 1.2540 68.6221
0.0022 45.4545 3000 1.2904 67.0721
0.0018 53.0303 3500 1.3139 67.5038
0.0017 60.6061 4000 1.3225 65.3783

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1