SOS-Bench Models
Collection
9 items
•
Updated
axolotl version: 0.4.1
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: AI-MO/NuminaMath-CoT
type: sharegpt.load_ultrachat
conversation: llama3
dataset_prepared_path: /scratch/bf996/axolotl/datasets/numina
output_dir: /scratch/bf996/axolotl/outputs/numina
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project: lm-evals
wandb_entity:
wandb_watch:
wandb_name: Llama-3-8B-NuminaCoT
wandb_log_model:
hub_model_id: penfever/Llama-3-8B-NuminaCoT
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
max_steps: 10000
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 0
eval_table_size:
save_strategy: steps
save_steps: 500
save_total_limit: 5
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the Numina Chain of Thought dataset. It uses the LLAMA-3 chat template.
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Base model
meta-llama/Meta-Llama-3-8B