|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
- es |
|
- de |
|
- fr |
|
- it |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
![image/png](https://huggingface.co/datasets/malteos/images/resolve/main/occiglot.medium.png) |
|
|
|
# Occiglot-7B-EU5 |
|
|
|
> A [polyglot](https://en.wikipedia.org/wiki/Multilingualism#In_individuals) language model for the [Occident](https://en.wikipedia.org/wiki/Occident). |
|
> |
|
|
|
**Occiglot-7B-EU5** is a generative language model with 7B parameters supporting the top-5 EU languages (English, Spanish, French, German, and Italian) and trained by the [Occiglot Research Collective](https://occiglot.github.io/occiglot/). |
|
It is based on [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) and trained on 293B tokens of additional multilingual and code data with a block size of 8,192 tokens per sample. |
|
Note that the model is a general-purpose base model and was not instruction-fine-tuned nor optimized for chat or other applications. We make an instruction tuned variant available as [occiglot-7b-eu5-instruct](https://huggingface.co/occiglot/occiglot-7b-eu5-instruct) |
|
|
|
This is the first release of an ongoing open research project for multilingual language models. |
|
If you want to train a model for your own language or are working on evaluations, please contact us or join our [Discord server](https://discord.gg/wUpvYs4XvM). **We are open for collaborations!** |
|
|
|
|
|
### Model details |
|
|
|
- **Continued-pretraining from:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) |
|
- **Model type:** Causal decoder-only transformer language model |
|
- **Languages:** English, Spanish, French, German, Italian, and code. |
|
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.html) |
|
- **Compute resources:** [HessianAI's 42](https://hessian.ai/) |
|
- **Contributors:** Manuel Brack, Patrick Schramowski, Pedro Ortiz, Malte Ostendorff, Fabio Barth, Georg Rehm, Kristian Kersting |
|
- **Research labs:** [Occiglot](https://occiglot.github.io/occiglot/) with support from [SAINT](https://www.dfki.de/en/web/research/research-departments/foundations-of-systems-ai) and [SLT](https://www.dfki.de/en/web/research/research-departments/speech-and-language-technology) |
|
- **Contact:** [Discord](https://discord.gg/wUpvYs4XvM) |
|
|
|
### How to use |
|
|
|
You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we |
|
set a seed for reproducibility: |
|
|
|
```python |
|
>>> from transformers import pipeline, set_seed |
|
>>> generator = pipeline('text-generation', model='occiglot/occiglot-7b-eu5') |
|
>>> set_seed(42) |
|
>>> generator("Hallo, Ich bin ein Sprachmodell,", max_length=40, num_return_sequences=1) |
|
[{'generated_text': 'Hallo, Ich bin ein Sprachmodell, das dir bei der Übersetzung von Texten zwischen Deutsch und Englisch helfen kann. Wenn du mir einen Text in Deutsch'}] |
|
``` |
|
|
|
## Dataset |
|
|
|
The training data was split amongst the 4 target languages (de, es, fr, it) and the continuous training in English and code. |
|
|
|
The data distribution by language (estimated) is as follows: |
|
- English: ~13% |
|
- Code: ~5% |
|
- German: ~20% |
|
- Spanish: ~20% |
|
- French: ~20% |
|
- Italian: ~20% |
|
|
|
The training data was prepared using [lm-datasets](https://github.com/malteos/lm-datasets). |
|
The exact data configuration is [here](https://huggingface.co/occiglot/occiglot-7b-eu5/blob/main/lm-datasets-config.yml). |
|
|
|
## Training settings |
|
|
|
- Continual pre-training on 128 x A100-80GB on [HessianAI's 42](https://hessian.ai/). |
|
- Framework: [Determined](https://www.determined.ai/) |
|
- Precision: bf16 |
|
- Optimizer: AdamW (lr: 0.00001, warmup_steps: 420) |
|
- Global batch size: 512 (with 8192 blocksize) split over 128 GPUs |
|
- Cosine Annealing with Warmup |
|
|
|
|
|
## Tokenizer |
|
|
|
Tokenizer is unchanged from [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1). |
|
|
|
## Evaluation |
|
|
|
Preliminary evaluation results can be found below. |
|
Please note that the non-English results are based on partially machine-translated datasets and English prompts ([Belebele](https://huggingface.co/datasets/facebook/belebele) and [Okapi framework](https://github.com/nlp-uoregon/Okapi)) and thus should be interpreted with caution, e.g., biased towards English model performance. |
|
Currently, we are working on more suitable benchmarks for Spanish, French, German, and Italian. |
|
|
|
<details> |
|
<summary>Evaluation results</summary> |
|
|
|
### English |
|
|
|
| | arc_challenge | belebele | hellaswag | mmlu | truthfulqa | avg | |
|
|:-------------------------------------|----------------:|-----------:|------------:|---------:|-------------:|---------:| |
|
| occiglot/occiglot-7b-eu5 | 0.530717 | 0.726667 | 0.789882 | 0.531904 | 0.403678 | 0.59657 | |
|
| occiglot/occiglot-7b-eu5-instruct | 0.558874 | 0.746667 | 0.799841 | 0.535109 | 0.449034 | 0.617905 | |
|
| occiglot/occiglot-7b-de-en | 0.556314 | 0.791111 | 0.803824 | 0.568438 | 0.423251 | 0.628587 | |
|
| occiglot/occiglot-7b-de-en-instruct | 0.604096 | 0.812222 | 0.80004 | 0.570574 | 0.493807 | 0.656148 | |
|
| LeoLM/leo-mistral-hessianai-7b | 0.522184 | 0.736667 | 0.777833 | 0.538812 | 0.429248 | 0.600949 | |
|
| mistralai/Mistral-7B-v0.1 | 0.612628 | 0.844444 | 0.834097 | 0.624555 | 0.426201 | 0.668385 | |
|
| mistralai/Mistral-7B-Instruct-v0.2 | 0.637372 | 0.824444 | 0.846345 | 0.59201 | 0.668116 | 0.713657 | |
|
|
|
|
|
### German |
|
|
|
| | arc_challenge_de | belebele_de | hellaswag_de | mmlu_de | truthfulqa_de | avg | |
|
|:-------------------------------------|-------------------:|--------------:|---------------:|----------:|----------------:|---------:| |
|
| occiglot/occiglot-7b-eu5 | 0.493584 | 0.646667 | 0.666631 | 0.483406 | 0.251269 | 0.508311 | |
|
| occiglot/occiglot-7b-eu5-instruct | 0.529512 | 0.667778 | 0.685205 | 0.488234 | 0.286802 | 0.531506 | |
|
| occiglot/occiglot-7b-de-en | 0.50556 | 0.743333 | 0.67421 | 0.514633 | 0.26269 | 0.540085 | |
|
| occiglot/occiglot-7b-de-en-instruct | 0.54491 | 0.772222 | 0.688407 | 0.515915 | 0.310914 | 0.566474 | |
|
| LeoLM/leo-mistral-hessianai-7b | 0.474765 | 0.691111 | 0.682109 | 0.488309 | 0.252538 | 0.517766 | |
|
| mistralai/Mistral-7B-v0.1 | 0.476476 | 0.738889 | 0.610589 | 0.529567 | 0.284264 | 0.527957 | |
|
| mistralai/Mistral-7B-Instruct-v0.2 | 0.485885 | 0.688889 | 0.622438 | 0.501961 | 0.376904 | 0.535215 | |
|
|
|
### Spanish |
|
|
|
| | arc_challenge_es | belebele_es | hellaswag_es | mmlu_es | truthfulqa_es | avg | |
|
|:-------------------------------------|-------------------:|--------------:|---------------:|----------:|----------------:|---------:| |
|
| occiglot/occiglot-7b-eu5 | 0.508547 | 0.676667 | 0.725411 | 0.499325 | 0.25602 | 0.533194 | |
|
| occiglot/occiglot-7b-eu5-instruct | 0.535043 | 0.68 | 0.737039 | 0.503525 | 0.285171 | 0.548155 | |
|
| occiglot/occiglot-7b-es-en | 0.529915 | 0.627778 | 0.72253 | 0.512749 | 0.243346 | 0.527264 | |
|
| occiglot/occiglot-7b-es-en-instruct | 0.545299 | 0.636667 | 0.734372 | 0.524374 | 0.257288 | 0.5396 | |
|
| clibrain/lince-mistral-7b-it-es | 0.52906 | 0.721111 | 0.687967 | 0.512749 | 0.285171 | 0.547212 | |
|
| mistralai/Mistral-7B-v0.1 | 0.528205 | 0.747778 | 0.672712 | 0.544023 | 0.281369 | 0.554817 | |
|
| mistralai/Mistral-7B-Instruct-v0.2 | 0.54188 | 0.73 | 0.685406 | 0.511699 | 0.373891 | 0.568575 | |
|
|
|
### French |
|
|
|
| | arc_challenge_fr | belebele_fr | hellaswag_fr | mmlu_fr | truthfulqa_fr | avg | |
|
|:-------------------------------------|-------------------:|--------------:|---------------:|----------:|----------------:|---------:| |
|
| occiglot/occiglot-7b-eu5 | 0.506416 | 0.675556 | 0.712358 | 0.495684 | 0.23507 | 0.525017 | |
|
| occiglot/occiglot-7b-eu5-instruct | 0.541488 | 0.7 | 0.724245 | 0.499122 | 0.306226 | 0.554216 | |
|
| occiglot/occiglot-7b-fr-en | 0.532934 | 0.706667 | 0.718891 | 0.51333 | 0.242694 | 0.542903 | |
|
| occiglot/occiglot-7b-fr-en-instruct | 0.542344 | 0.752222 | 0.72553 | 0.52051 | 0.29479 | 0.567079 | |
|
| OpenLLM-France/Claire-Mistral-7B-0.1 | 0.486741 | 0.694444 | 0.642964 | 0.479566 | 0.271919 | 0.515127 | |
|
| mistralai/Mistral-7B-v0.1 | 0.525235 | 0.776667 | 0.66481 | 0.543121 | 0.280813 | 0.558129 | |
|
| mistralai/Mistral-7B-Instruct-v0.2 | 0.551754 | 0.758889 | 0.67916 | 0.506837 | 0.382465 | 0.575821 | |
|
|
|
### Italian |
|
|
|
| | arc_challenge_it | belebele_it | hellaswag_it | mmlu_it | truthfulqa_it | avg | |
|
|:-------------------------------------|-------------------:|--------------:|---------------:|----------:|----------------:|---------:| |
|
| occiglot/occiglot-7b-eu5 | 0.501283 | 0.652222 | 0.700533 | 0 | 0.252874 | 0.421382 | |
|
| occiglot/occiglot-7b-eu5-instruct | 0.516681 | 0.661111 | 0.71326 | 0 | 0.295019 | 0.437214 | |
|
| occiglot/occiglot-7b-it-en | 0.536356 | 0.684444 | 0.694768 | 0 | 0.247765 | 0.432667 | |
|
| occiglot/occiglot-7b-it-en-instruct | 0.545766 | 0.717778 | 0.713804 | 0 | 0.303959 | 0.456261 | |
|
| galatolo/cerbero-7b | 0.522669 | 0.717778 | 0.631567 | 0 | 0.302682 | 0.434939 | |
|
| mistralai/Mistral-7B-v0.1 | 0.502139 | 0.734444 | 0.630371 | 0 | 0.264368 | 0.426264 | |
|
| mistralai/Mistral-7B-Instruct-v0.2 | 0.519247 | 0.703333 | 0.6394 | 0 | 0.349936 | 0.442383 | |
|
|
|
|
|
</details> |
|
|
|
## Acknowledgements |
|
|
|
The model training was supported by a compute grant at the [42 supercomputer](https://hessian.ai/) which is a central component in the development of [hessian AI](https://hessian.ai/), the [AI Innovation Lab](https://hessian.ai/infrastructure/ai-innovationlab/) (funded by the [Hessian Ministry of Higher Education, Research and the Art (HMWK)](https://wissenschaft.hessen.de) & the [Hessian Ministry of the Interior, for Security and Homeland Security (HMinD)](https://innen.hessen.de)) and the [AI Service Centers](https://hessian.ai/infrastructure/ai-service-centre/) (funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html)). |
|
The curation of the training data is partially funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html) |
|
through the project [OpenGPT-X](https://opengpt-x.de/en/) (project no. 68GX21007D). |
|
|
|
|
|
## License |
|
|
|
[Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.html) |
|
|
|
## See also |
|
|
|
- https://huggingface.co/NikolayKozloff/occiglot-7b-eu5-GGUF |
|
- https://huggingface.co/collections/occiglot/occiglot-eu5-7b-v01-65dbed502a6348b052695e01 |
|
|
|
|