|
--- |
|
library_name: transformers |
|
language: |
|
- yo |
|
- en |
|
- ig |
|
license: apache-2.0 |
|
base_model: ccibeekeoc42/whisper-small-yoruba-07-17 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: whisper-small-multilingual-naija-10-20-2024 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-small-multilingual-naija-10-20-2024 |
|
|
|
This model is a fine-tuned version of [ccibeekeoc42/whisper-small-yoruba-07-17](https://huggingface.co/ccibeekeoc42/whisper-small-yoruba-07-17) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7923 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 1 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.5348 | 0.0458 | 100 | 1.4792 | |
|
| 1.1822 | 0.0916 | 200 | 1.1469 | |
|
| 0.9827 | 0.1374 | 300 | 1.0446 | |
|
| 0.9354 | 0.1832 | 400 | 0.9927 | |
|
| 0.8592 | 0.2290 | 500 | 0.9554 | |
|
| 0.7696 | 0.2749 | 600 | 0.9287 | |
|
| 0.7795 | 0.3207 | 700 | 0.9012 | |
|
| 0.712 | 0.3665 | 800 | 0.8869 | |
|
| 0.6793 | 0.4123 | 900 | 0.8753 | |
|
| 0.7472 | 0.4581 | 1000 | 0.8578 | |
|
| 0.7303 | 0.5039 | 1100 | 0.8460 | |
|
| 0.6875 | 0.5497 | 1200 | 0.8380 | |
|
| 0.7384 | 0.5955 | 1300 | 0.8287 | |
|
| 0.7037 | 0.6413 | 1400 | 0.8211 | |
|
| 0.712 | 0.6871 | 1500 | 0.8195 | |
|
| 0.679 | 0.7329 | 1600 | 0.8073 | |
|
| 0.6814 | 0.7787 | 1700 | 0.8033 | |
|
| 0.6344 | 0.8246 | 1800 | 0.7994 | |
|
| 0.6103 | 0.8704 | 1900 | 0.7950 | |
|
| 0.6994 | 0.9162 | 2000 | 0.7926 | |
|
| 0.5639 | 0.9620 | 2100 | 0.7923 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.1 |
|
|