Update README.md
#1
by
yonigozlan
HF staff
- opened
README.md
CHANGED
@@ -1,199 +1,124 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
[
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
[
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
pipeline_tag: zero-shot-object-detection
|
4 |
---
|
5 |
|
6 |
+
# OmDet model
|
7 |
+
|
8 |
+
The OmDet model was proposed in [Real-time Transformer-based Open-Vocabulary Detection with Efficient Fusion Head](https://arxiv.org/abs/2403.06892) by Tiancheng Zhao, Peng Liu, Xuan He, Lu Zhang, Kyusong Lee.
|
9 |
+
|
10 |
+
# Intended use cases
|
11 |
+
|
12 |
+
This model is intended for zero-shot (also called open-vocabulary) object detection.
|
13 |
+
|
14 |
+
# Usage
|
15 |
+
|
16 |
+
## Single image inference
|
17 |
+
|
18 |
+
Here's how to load the model and prepare the inputs to perform zero-shot object detection on a single image:
|
19 |
+
|
20 |
+
```python
|
21 |
+
import requests
|
22 |
+
from PIL import Image
|
23 |
+
|
24 |
+
from transformers import AutoProcessor, OmDetTurboForObjectDetection
|
25 |
+
|
26 |
+
processor = AutoProcessor.from_pretrained("omlab/omdet-turbo-tiny")
|
27 |
+
model = OmDetTurboForObjectDetection.from_pretrained("omlab/omdet-turbo-tiny")
|
28 |
+
|
29 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
30 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
31 |
+
classes = ["cat", "remote"]
|
32 |
+
inputs = processor(image, text=classes, return_tensors="pt")
|
33 |
+
|
34 |
+
outputs = model(**inputs)
|
35 |
+
|
36 |
+
# convert outputs (bounding boxes and class logits)
|
37 |
+
results = processor.post_process_grounded_object_detection(
|
38 |
+
outputs,
|
39 |
+
classes=classes,
|
40 |
+
target_sizes=[image.size[::-1]],
|
41 |
+
score_threshold=0.3,
|
42 |
+
nms_threshold=0.3,
|
43 |
+
)[0]
|
44 |
+
for score, class_name, box in zip(
|
45 |
+
results["scores"], results["classes"], results["boxes"]
|
46 |
+
):
|
47 |
+
box = [round(i, 1) for i in box.tolist()]
|
48 |
+
print(
|
49 |
+
f"Detected {class_name} with confidence "
|
50 |
+
f"{round(score.item(), 2)} at location {box}"
|
51 |
+
)
|
52 |
+
```
|
53 |
+
|
54 |
+
## Batched images inference
|
55 |
+
|
56 |
+
OmDet-Turbo can perform batched multi-image inference, with support for different text prompts and classes in the same batch:
|
57 |
+
|
58 |
+
```python
|
59 |
+
>>> import torch
|
60 |
+
>>> import requests
|
61 |
+
>>> from io import BytesIO
|
62 |
+
>>> from PIL import Image
|
63 |
+
>>> from transformers import AutoProcessor, OmDetTurboForObjectDetection
|
64 |
+
|
65 |
+
>>> processor = AutoProcessor.from_pretrained("omlab/omdet-turbo-swin-tiny-hf")
|
66 |
+
>>> model = OmDetTurboForObjectDetection.from_pretrained("omlab/omdet-turbo-swin-tiny-hf")
|
67 |
+
|
68 |
+
>>> url1 = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
69 |
+
>>> image1 = Image.open(BytesIO(requests.get(url1).content)).convert("RGB")
|
70 |
+
>>> classes1 = ["cat", "remote"]
|
71 |
+
>>> task1 = "Detect {}.".format(", ".join(classes1))
|
72 |
+
|
73 |
+
>>> url2 = "http://images.cocodataset.org/train2017/000000257813.jpg"
|
74 |
+
>>> image2 = Image.open(BytesIO(requests.get(url2).content)).convert("RGB")
|
75 |
+
>>> classes2 = ["boat"]
|
76 |
+
>>> task2 = "Detect everything that looks like a boat."
|
77 |
+
|
78 |
+
>>> url3 = "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
|
79 |
+
>>> image3 = Image.open(BytesIO(requests.get(url3).content)).convert("RGB")
|
80 |
+
>>> classes3 = ["statue", "trees"]
|
81 |
+
>>> task3 = "Focus on the foreground, detect statue and trees."
|
82 |
+
|
83 |
+
>>> inputs = processor(
|
84 |
+
... images=[image1, image2, image3],
|
85 |
+
... text=[classes1, classes2, classes3],
|
86 |
+
... task=[task1, task2, task3],
|
87 |
+
... return_tensors="pt",
|
88 |
+
... )
|
89 |
+
|
90 |
+
>>> with torch.no_grad():
|
91 |
+
... outputs = model(**inputs)
|
92 |
+
|
93 |
+
>>> # convert outputs (bounding boxes and class logits)
|
94 |
+
>>> results = processor.post_process_grounded_object_detection(
|
95 |
+
... outputs,
|
96 |
+
... classes=[classes1, classes2, classes3],
|
97 |
+
... target_sizes=[image1.size[::-1], image2.size[::-1], image3.size[::-1]],
|
98 |
+
... score_threshold=0.2,
|
99 |
+
... nms_threshold=0.3,
|
100 |
+
... )
|
101 |
+
|
102 |
+
>>> for i, result in enumerate(results):
|
103 |
+
... for score, class_name, box in zip(
|
104 |
+
... result["scores"], result["classes"], result["boxes"]
|
105 |
+
... ):
|
106 |
+
... box = [round(i, 1) for i in box.tolist()]
|
107 |
+
... print(
|
108 |
+
... f"Detected {class_name} with confidence "
|
109 |
+
... f"{round(score.item(), 2)} at location {box} in image {i}"
|
110 |
+
... )
|
111 |
+
Detected remote with confidence 0.77 at location [39.9, 70.4, 176.7, 118.0] in image 0
|
112 |
+
Detected cat with confidence 0.72 at location [11.6, 54.2, 314.8, 474.0] in image 0
|
113 |
+
Detected remote with confidence 0.56 at location [333.4, 75.8, 370.7, 187.0] in image 0
|
114 |
+
Detected cat with confidence 0.55 at location [345.2, 24.0, 639.8, 371.7] in image 0
|
115 |
+
Detected boat with confidence 0.32 at location [146.9, 219.8, 209.6, 250.7] in image 1
|
116 |
+
Detected boat with confidence 0.3 at location [319.1, 223.2, 403.2, 238.4] in image 1
|
117 |
+
Detected boat with confidence 0.27 at location [37.7, 220.3, 84.0, 235.9] in image 1
|
118 |
+
Detected boat with confidence 0.22 at location [407.9, 207.0, 441.7, 220.2] in image 1
|
119 |
+
Detected statue with confidence 0.73 at location [544.7, 210.2, 651.9, 502.8] in image 2
|
120 |
+
Detected trees with confidence 0.25 at location [3.9, 584.3, 391.4, 785.6] in image 2
|
121 |
+
Detected trees with confidence 0.25 at location [1.4, 621.2, 118.2, 787.8] in image 2
|
122 |
+
Detected statue with confidence 0.2 at location [428.1, 205.5, 767.3, 759.5] in image 2
|
123 |
+
|
124 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|