metadata
license: mit
base_model: microsoft/deberta-v3-large
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: deberta-disaster-tweet-recognizer
results: []
Deberta Disaster Tweet Recognizer
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4104
- F1: 0.8
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 1.0 | 191 | 0.4159 | 0.7894 |
No log | 2.0 | 382 | 0.3845 | 0.7973 |
0.4497 | 3.0 | 573 | 0.3952 | 0.8016 |
0.4497 | 4.0 | 764 | 0.4104 | 0.8 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2