File size: 3,149 Bytes
d88616a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Boya1_3Class_RMSprop_1-e5_20Epoch_Beit-base-patch16_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8222402597402597
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Boya1_3Class_RMSprop_1-e5_20Epoch_Beit-base-patch16_fold3
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8476
- Accuracy: 0.8222
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.4509 | 1.0 | 923 | 0.4494 | 0.8149 |
| 0.3482 | 2.0 | 1846 | 0.4215 | 0.8328 |
| 0.2766 | 3.0 | 2769 | 0.4845 | 0.8241 |
| 0.1282 | 4.0 | 3692 | 0.6763 | 0.8333 |
| 0.0823 | 5.0 | 4615 | 0.8609 | 0.8252 |
| 0.2362 | 6.0 | 5538 | 1.1571 | 0.8163 |
| 0.0242 | 7.0 | 6461 | 1.3157 | 0.8203 |
| 0.0078 | 8.0 | 7384 | 1.5067 | 0.8063 |
| 0.0045 | 9.0 | 8307 | 1.5694 | 0.8182 |
| 0.0161 | 10.0 | 9230 | 1.6636 | 0.8168 |
| 0.005 | 11.0 | 10153 | 1.7056 | 0.8185 |
| 0.0057 | 12.0 | 11076 | 1.6400 | 0.8222 |
| 0.0001 | 13.0 | 11999 | 1.7600 | 0.8258 |
| 0.0671 | 14.0 | 12922 | 1.8091 | 0.8241 |
| 0.0041 | 15.0 | 13845 | 1.8050 | 0.8225 |
| 0.0 | 16.0 | 14768 | 1.8120 | 0.8222 |
| 0.0556 | 17.0 | 15691 | 1.8242 | 0.8212 |
| 0.0 | 18.0 | 16614 | 1.8578 | 0.8214 |
| 0.0 | 19.0 | 17537 | 1.8441 | 0.8217 |
| 0.0099 | 20.0 | 18460 | 1.8476 | 0.8222 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|