Edit model card

Boya1_3Class_RMSprop_1-e5_20Epoch_Beit-base-patch16_fold3

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8476
  • Accuracy: 0.8222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4509 1.0 923 0.4494 0.8149
0.3482 2.0 1846 0.4215 0.8328
0.2766 3.0 2769 0.4845 0.8241
0.1282 4.0 3692 0.6763 0.8333
0.0823 5.0 4615 0.8609 0.8252
0.2362 6.0 5538 1.1571 0.8163
0.0242 7.0 6461 1.3157 0.8203
0.0078 8.0 7384 1.5067 0.8063
0.0045 9.0 8307 1.5694 0.8182
0.0161 10.0 9230 1.6636 0.8168
0.005 11.0 10153 1.7056 0.8185
0.0057 12.0 11076 1.6400 0.8222
0.0001 13.0 11999 1.7600 0.8258
0.0671 14.0 12922 1.8091 0.8241
0.0041 15.0 13845 1.8050 0.8225
0.0 16.0 14768 1.8120 0.8222
0.0556 17.0 15691 1.8242 0.8212
0.0 18.0 16614 1.8578 0.8214
0.0 19.0 17537 1.8441 0.8217
0.0099 20.0 18460 1.8476 0.8222

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
5
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for onizukal/Boya1_3Class_RMSprop_1-e5_20Epoch_Beit-base-patch16_fold3

Finetuned
(60)
this model

Evaluation results