Edit model card

Boya1_3Class_RMSprop_1-e5_20Epoch_Beit-base-patch16_fold4

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8083
  • Accuracy: 0.8233

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3492 1.0 923 0.4516 0.8087
0.3947 2.0 1846 0.4372 0.8144
0.3321 3.0 2769 0.4856 0.8220
0.1372 4.0 3692 0.6093 0.8271
0.2202 5.0 4615 0.8876 0.8184
0.0611 6.0 5538 1.1112 0.8222
0.0654 7.0 6461 1.2516 0.8241
0.0494 8.0 7384 1.5011 0.8209
0.0614 9.0 8307 1.3879 0.8190
0.1723 10.0 9230 1.5852 0.8160
0.0314 11.0 10153 1.7058 0.8209
0.006 12.0 11076 1.7427 0.8233
0.0603 13.0 11999 1.6775 0.8206
0.0734 14.0 12922 1.7302 0.8257
0.0185 15.0 13845 1.7895 0.8236
0.0006 16.0 14768 1.7889 0.8220
0.0006 17.0 15691 1.8447 0.8198
0.0003 18.0 16614 1.8183 0.8184
0.0002 19.0 17537 1.8137 0.8176
0.0 20.0 18460 1.8083 0.8233

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
3
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for onizukal/Boya1_3Class_RMSprop_1-e5_20Epoch_Beit-base-patch16_fold4

Finetuned
(60)
this model

Evaluation results