Edit model card

Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold2

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1168
  • Accuracy: 0.6438

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0678 1.0 923 1.1860 0.5962
0.9795 2.0 1846 1.0466 0.6414
0.6213 3.0 2769 1.0577 0.6403
0.3941 4.0 3692 1.2437 0.6424
0.3011 5.0 4615 1.4589 0.6443
0.1999 6.0 5538 1.7644 0.63
0.039 7.0 6461 1.9747 0.64
0.0664 8.0 7384 2.2470 0.6368
0.0635 9.0 8307 2.4483 0.6451
0.0688 10.0 9230 2.6192 0.6516
0.0389 11.0 10153 2.7333 0.6470
0.0075 12.0 11076 2.8548 0.6446
0.0085 13.0 11999 2.9858 0.6416
0.0018 14.0 12922 2.9790 0.6424
0.0034 15.0 13845 3.0326 0.6443
0.009 16.0 14768 3.0570 0.6473
0.0005 17.0 15691 3.1227 0.6419
0.0 18.0 16614 3.1155 0.6449
0.0002 19.0 17537 3.1130 0.6454
0.0002 20.0 18460 3.1168 0.6438

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
5
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for onizukal/Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold2

Finetuned
(60)
this model

Evaluation results