onizukal's picture
End of training
158458a verified
|
raw
history blame
3.04 kB
metadata
license: apache-2.0
base_model: microsoft/swin-large-patch4-window7-224-in22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: Boya2_SGD_1e3_20Epoch_Swin-large-224_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.46242142661929486

Boya2_SGD_1e3_20Epoch_Swin-large-224_fold2

This model is a fine-tuned version of microsoft/swin-large-patch4-window7-224-in22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7316
  • Accuracy: 0.4624

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.613 1.0 913 2.5089 0.2774
2.2378 2.0 1826 2.3352 0.2938
2.1303 3.0 2739 2.2226 0.3184
2.0563 4.0 3652 2.1385 0.3506
2.1322 5.0 4565 2.0717 0.3758
2.004 6.0 5478 2.0113 0.3955
2.079 7.0 6391 1.9666 0.4130
1.78 8.0 7304 1.9230 0.4225
1.7925 9.0 8217 1.8877 0.4354
1.9366 10.0 9130 1.8567 0.4403
1.5845 11.0 10043 1.8338 0.4458
1.6846 12.0 10956 1.8079 0.4520
1.7316 13.0 11869 1.7920 0.4545
1.6397 14.0 12782 1.7737 0.4600
1.8114 15.0 13695 1.7580 0.4605
1.5862 16.0 14608 1.7502 0.4621
1.8464 17.0 15521 1.7422 0.4641
1.8008 18.0 16434 1.7370 0.4627
1.719 19.0 17347 1.7333 0.4632
1.5652 20.0 18260 1.7316 0.4624

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.13.2