|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/swin-large-patch4-window12-384-in22k |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: Boya3_SGD_1e3_20Epoch_Swin-large_fold1 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: test |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.4023809523809524 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Boya3_SGD_1e3_20Epoch_Swin-large_fold1 |
|
|
|
This model is a fine-tuned version of [microsoft/swin-large-patch4-window12-384-in22k](https://huggingface.co/microsoft/swin-large-patch4-window12-384-in22k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.8852 |
|
- Accuracy: 0.4024 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 2.6532 | 1.0 | 632 | 2.5742 | 0.2512 | |
|
| 2.3757 | 2.0 | 1264 | 2.3681 | 0.2865 | |
|
| 2.2527 | 3.0 | 1896 | 2.2467 | 0.3060 | |
|
| 2.2221 | 4.0 | 2528 | 2.1715 | 0.3179 | |
|
| 2.1297 | 5.0 | 3160 | 2.1100 | 0.3230 | |
|
| 2.068 | 6.0 | 3792 | 2.0715 | 0.3456 | |
|
| 1.9695 | 7.0 | 4424 | 2.0381 | 0.3444 | |
|
| 2.1086 | 8.0 | 5056 | 2.0071 | 0.3635 | |
|
| 2.093 | 9.0 | 5688 | 1.9854 | 0.3651 | |
|
| 2.05 | 10.0 | 6320 | 1.9645 | 0.3710 | |
|
| 2.0434 | 11.0 | 6952 | 1.9480 | 0.3786 | |
|
| 2.0666 | 12.0 | 7584 | 1.9363 | 0.3817 | |
|
| 1.846 | 13.0 | 8216 | 1.9201 | 0.3889 | |
|
| 1.9809 | 14.0 | 8848 | 1.9124 | 0.3897 | |
|
| 1.844 | 15.0 | 9480 | 1.9027 | 0.3948 | |
|
| 1.9048 | 16.0 | 10112 | 1.8971 | 0.3948 | |
|
| 2.0342 | 17.0 | 10744 | 1.8912 | 0.4 | |
|
| 1.822 | 18.0 | 11376 | 1.8876 | 0.4008 | |
|
| 1.8676 | 19.0 | 12008 | 1.8858 | 0.4024 | |
|
| 1.9147 | 20.0 | 12640 | 1.8852 | 0.4024 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.1 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.13.2 |
|
|