|
--- |
|
library_name: transformers.js |
|
tags: |
|
- background-removal |
|
- mask-generation |
|
- Dichotomous Image Segmentation |
|
- Camouflaged Object Detection |
|
- Salient Object Detection |
|
repo_url: https://github.com/ZhengPeng7/BiRefNet |
|
pipeline_tag: image-segmentation |
|
--- |
|
<h1 align="center">Bilateral Reference for High-Resolution Dichotomous Image Segmentation</h1> |
|
|
|
<div align='center'> |
|
<a href='https://scholar.google.com/citations?user=TZRzWOsAAAAJ' target='_blank'><strong>Peng Zheng</strong></a><sup> 1,4,5,6</sup>,  |
|
<a href='https://scholar.google.com/citations?user=0uPb8MMAAAAJ' target='_blank'><strong>Dehong Gao</strong></a><sup> 2</sup>,  |
|
<a href='https://scholar.google.com/citations?user=kakwJ5QAAAAJ' target='_blank'><strong>Deng-Ping Fan</strong></a><sup> 1*</sup>,  |
|
<a href='https://scholar.google.com/citations?user=9cMQrVsAAAAJ' target='_blank'><strong>Li Liu</strong></a><sup> 3</sup>,  |
|
<a href='https://scholar.google.com/citations?user=qQP6WXIAAAAJ' target='_blank'><strong>Jorma Laaksonen</strong></a><sup> 4</sup>,  |
|
<a href='https://scholar.google.com/citations?user=pw_0Z_UAAAAJ' target='_blank'><strong>Wanli Ouyang</strong></a><sup> 5</sup>,  |
|
<a href='https://scholar.google.com/citations?user=stFCYOAAAAAJ' target='_blank'><strong>Nicu Sebe</strong></a><sup> 6</sup> |
|
</div> |
|
|
|
<div align='center'> |
|
<sup>1 </sup>Nankai University  <sup>2 </sup>Northwestern Polytechnical University  <sup>3 </sup>National University of Defense Technology  <sup>4 </sup>Aalto University  <sup>5 </sup>Shanghai AI Laboratory  <sup>6 </sup>University of Trento  |
|
</div> |
|
|
|
| *DIS-Sample_1* | *DIS-Sample_2* | |
|
| :------------------------------: | :-------------------------------: | |
|
| <img src="https://drive.google.com/thumbnail?id=1ItXaA26iYnE8XQ_GgNLy71MOWePoS2-g&sz=w400" /> | <img src="https://drive.google.com/thumbnail?id=1Z-esCujQF_uEa_YJjkibc3NUrW4aR_d4&sz=w400" /> | |
|
|
|
For more information, check out the official [repository](https://github.com/ZhengPeng7/BiRefNet). |
|
|
|
## Usage (Transformers.js) |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: |
|
```bash |
|
npm i @huggingface/transformers |
|
``` |
|
|
|
You can then use the model for image matting, as follows: |
|
|
|
```js |
|
import { AutoModel, AutoProcessor, RawImage } from '@huggingface/transformers'; |
|
|
|
// Load model and processor |
|
const model_id = 'onnx-community/BiRefNet_lite'; |
|
const model = await AutoModel.from_pretrained(model_id, { dtype: 'fp32' }); |
|
const processor = await AutoProcessor.from_pretrained(model_id); |
|
|
|
// Load image from URL |
|
const url = 'https://images.pexels.com/photos/5965592/pexels-photo-5965592.jpeg?auto=compress&cs=tinysrgb&w=1024'; |
|
const image = await RawImage.fromURL(url); |
|
|
|
// Pre-process image |
|
const { pixel_values } = await processor(image); |
|
|
|
// Predict alpha matte |
|
const { output_image } = await model({ input_image: pixel_values }); |
|
|
|
// Save output mask |
|
const mask = await RawImage.fromTensor(output_image[0].sigmoid().mul(255).to('uint8')).resize(image.width, image.height); |
|
mask.save('mask.png'); |
|
``` |
|
|
|
| Input image | Output mask | |
|
|--------|--------| |
|
| ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/cRw4xmlhgkCZ72qJckrps.png) | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/pcUeTxkZKPRVfT5oDn0Un.png) | |
|
|
|
## Citation |
|
|
|
``` |
|
@article{BiRefNet, |
|
title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation}, |
|
author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu}, |
|
journal={CAAI Artificial Intelligence Research}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
--- |
|
|
|
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |