metadata
license: gemma
base_model: axolotl-ai-co/gemma-2-9b
tags:
- generated_from_trainer
model-index:
- name: outputs/out
results: []
See axolotl config
axolotl version: 0.4.1
base_model: axolotl-ai-co/gemma-2-9b
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
# huggingface repo
chat_template: gemma
datasets:
- path: cgato/SlimOrcaDedupCleaned
type: chat_template
chat_template: gemma
drop_system_message: true
val_set_size: 0.0
output_dir: ./outputs/out
sequence_len: 2048
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
adam_beta2: 0.95
adam_eps: 0.00001
max_grad_norm: 1.0
lr_scheduler: cosine
learning_rate: 0.00003
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch:
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 2
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.1
_fsdp:
- full_shard
- auto_wrap
_fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: false
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: Gemma2DecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
special_tokens:
outputs/out
This model is a fine-tuned version of axolotl-ai-co/gemma-2-9b on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 44
- num_epochs: 1
Training results
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1