|
--- |
|
language: |
|
- zh |
|
- en |
|
base_model: openbmb/MiniCPM-2B-sft-bf16 |
|
model-index: |
|
- name: MiniCPM-Embedding |
|
results: |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/arguana |
|
name: MTEB ArguAna |
|
config: default |
|
split: test |
|
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 64.65 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackRetrieval |
|
config: default |
|
split: test |
|
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 46.53 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/climate-fever |
|
name: MTEB ClimateFEVER |
|
config: default |
|
split: test |
|
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 35.55 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/dbpedia |
|
name: MTEB DBPedia |
|
config: default |
|
split: test |
|
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 47.82 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/fever |
|
name: MTEB FEVER |
|
config: default |
|
split: test |
|
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 90.76 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/fiqa |
|
name: MTEB FiQA2018 |
|
config: default |
|
split: test |
|
revision: 27a168819829fe9bcd655c2df245fb19452e8e06 |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 56.64 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/hotpotqa |
|
name: MTEB HotpotQA |
|
config: default |
|
split: test |
|
revision: ab518f4d6fcca38d87c25209f94beba119d02014 |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 78.11 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/msmarco |
|
name: MTEB MSMARCO |
|
config: default |
|
split: dev |
|
revision: c5a29a104738b98a9e76336939199e264163d4a0 |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 43.93 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/nfcorpus |
|
name: MTEB NFCorpus |
|
config: default |
|
split: test |
|
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 39.77 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/nq |
|
name: MTEB NQ |
|
config: default |
|
split: test |
|
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 69.29 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/quora |
|
name: MTEB QuoraRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 89.97 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/scidocs |
|
name: MTEB SCIDOCS |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 22.38 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/scifact |
|
name: MTEB SciFact |
|
config: default |
|
split: test |
|
revision: 0228b52cf27578f30900b9e5271d331663a030d7 |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 86.6 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/trec-covid |
|
name: MTEB TRECCOVID |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 81.32 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/touche2020 |
|
name: MTEB Touche2020 |
|
config: default |
|
split: test |
|
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 25.08 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/CmedqaRetrieval |
|
name: MTEB CmedqaRetrieval |
|
config: default |
|
split: dev |
|
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301 |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 46.05 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/CovidRetrieval |
|
name: MTEB CovidRetrieval |
|
config: default |
|
split: dev |
|
revision: 1271c7809071a13532e05f25fb53511ffce77117 |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 92.01 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/DuRetrieval |
|
name: MTEB DuRetrieval |
|
config: default |
|
split: dev |
|
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 90.98 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/EcomRetrieval |
|
name: MTEB EcomRetrieval |
|
config: default |
|
split: dev |
|
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9 |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 70.21 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/MMarcoRetrieval |
|
name: MTEB MMarcoRetrieval |
|
config: default |
|
split: dev |
|
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2 |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 85.55 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/MedicalRetrieval |
|
name: MTEB MedicalRetrieval |
|
config: default |
|
split: dev |
|
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6 |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 63.91 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/T2Retrieval |
|
name: MTEB T2Retrieval |
|
config: default |
|
split: dev |
|
revision: 8731a845f1bf500a4f111cf1070785c793d10e64 |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 87.33 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/VideoRetrieval |
|
name: MTEB VideoRetrieval |
|
config: default |
|
split: dev |
|
revision: 58c2597a5943a2ba48f4668c3b90d796283c5639 |
|
metrics: |
|
- type: ndcg_at_10 |
|
value: 78.05 |
|
pipeline_tag: feature-extraction |
|
tags: |
|
- mteb |
|
- sentence-transformers |
|
library_name: transformers |
|
--- |
|
## MiniCPM-Embedding |
|
|
|
**MiniCPM-Embedding** 是面壁智能与清华大学自然语言处理实验室(THUNLP)、东北大学信息检索小组(NEUIR)共同开发的中英双语言文本嵌入模型,有如下特点: |
|
- 出色的中文、英文检索能力。 |
|
- 出色的中英跨语言检索能力。 |
|
|
|
MiniCPM-Embedding 基于 [MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) 训练,结构上采取双向注意力和 Weighted Mean Pooling [1]。采取多阶段训练方式,共使用包括开源数据、机造数据、闭源数据在内的约 600 万条训练数据。 |
|
|
|
欢迎关注 RAG 套件系列: |
|
|
|
- 检索模型:[MiniCPM-Embedding](https://huggingface.co/openbmb/MiniCPM-Embedding) |
|
- 重排模型:[MiniCPM-Reranker](https://huggingface.co/openbmb/MiniCPM-Reranker) |
|
- 面向 RAG 场景的 LoRA 插件:[MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA) |
|
|
|
**MiniCPM-Embedding** is a bilingual & cross-lingual text embedding model developed by ModelBest Inc. , THUNLP and NEUIR , featuring: |
|
|
|
- Exceptional Chinese and English retrieval capabilities. |
|
- Outstanding cross-lingual retrieval capabilities between Chinese and English. |
|
|
|
MiniCPM-Embedding is trained based on [MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) and incorporates bidirectional attention and Weighted Mean Pooling [1] in its architecture. The model underwent multi-stage training using approximately 6 million training examples, including open-source, synthetic, and proprietary data. |
|
|
|
We also invite you to explore the RAG toolkit series: |
|
|
|
- Retrieval Model: [MiniCPM-Embedding](https://huggingface.co/openbmb/MiniCPM-Embedding) |
|
- Re-ranking Model: [MiniCPM-Reranker](https://huggingface.co/openbmb/MiniCPM-Reranker) |
|
- LoRA Plugin for RAG scenarios: [MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA) |
|
|
|
[1] Muennighoff, N. (2022). Sgpt: Gpt sentence embeddings for semantic search. arXiv preprint arXiv:2202.08904. |
|
|
|
## 模型信息 Model Information |
|
|
|
- 模型大小:2.4B |
|
- 嵌入维度:2304 |
|
- 最大输入token数:512 |
|
|
|
- Model Size: 2.4B |
|
- Embedding Dimension: 2304 |
|
- Max Input Tokens: 512 |
|
|
|
## 使用方法 Usage |
|
|
|
### 输入格式 Input Format |
|
|
|
本模型支持 query 侧指令,格式如下: |
|
|
|
MiniCPM-Embedding supports query-side instructions in the following format: |
|
|
|
``` |
|
Instruction: {{ instruction }} Query: {{ query }} |
|
``` |
|
|
|
例如: |
|
|
|
For example: |
|
|
|
``` |
|
Instruction: 为这个医学问题检索相关回答。Query: 咽喉癌的成因是什么? |
|
``` |
|
|
|
``` |
|
Instruction: Given a claim about climate change, retrieve documents that support or refute the claim. Query: However the warming trend is slower than most climate models have forecast. |
|
``` |
|
|
|
也可以不提供指令,即采取如下格式: |
|
|
|
MiniCPM-Embedding also works in instruction-free mode in the following format: |
|
|
|
``` |
|
Query: {{ query }} |
|
``` |
|
|
|
我们在 BEIR 与 C-MTEB/Retrieval 上测试时使用的指令见 `instructions.json`,其他测试不使用指令。文档侧直接输入文档原文。 |
|
|
|
When running evaluation on BEIR and C-MTEB/Retrieval, we use instructions in `instructions.json`. For other evaluations, we do not use instructions. On the document side, we directly use the bare document as the input. |
|
|
|
### 环境要求 Requirements |
|
|
|
``` |
|
transformers==4.37.2 |
|
flash-attn>2.3.5 |
|
``` |
|
|
|
### 示例脚本 Demo |
|
|
|
#### Huggingface Transformers |
|
```python |
|
|
|
from transformers import AutoModel, AutoTokenizer |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
model_name = "openbmb/MiniCPM-Embedding" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation="flash_attention_2", torch_dtype=torch.float16).to("cuda") |
|
model.eval() |
|
|
|
# 由于在 `model.forward` 中缩放了最终隐层表示,此处的 mean pooling 实际上起到了 weighted mean pooling 的作用 |
|
# As we scale hidden states in `model.forward`, mean pooling here actually works as weighted mean pooling |
|
def mean_pooling(hidden, attention_mask): |
|
s = torch.sum(hidden * attention_mask.unsqueeze(-1).float(), dim=1) |
|
d = attention_mask.sum(dim=1, keepdim=True).float() |
|
reps = s / d |
|
return reps |
|
|
|
@torch.no_grad() |
|
def encode(input_texts): |
|
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt', return_attention_mask=True).to("cuda") |
|
|
|
outputs = model(**batch_dict) |
|
attention_mask = batch_dict["attention_mask"] |
|
hidden = outputs.last_hidden_state |
|
|
|
reps = mean_pooling(hidden, attention_mask) |
|
embeddings = F.normalize(reps, p=2, dim=1).detach().cpu().numpy() |
|
return embeddings |
|
|
|
queries = ["中国的首都是哪里?"] |
|
passages = ["beijing", "shanghai"] |
|
|
|
|
|
INSTRUCTION = "Query: " |
|
queries = [INSTRUCTION + query for query in queries] |
|
|
|
embeddings_query = encode(queries) |
|
embeddings_doc = encode(passages) |
|
|
|
scores = (embeddings_query @ embeddings_doc.T) |
|
print(scores.tolist()) # [[0.3535913825035095, 0.18596848845481873]] |
|
``` |
|
|
|
#### Sentence Transformers |
|
|
|
```python |
|
import torch |
|
from sentence_transformers import SentenceTransformer |
|
|
|
model_name = "openbmb/MiniCPM-Embedding" |
|
model = SentenceTransformer(model_name, trust_remote_code=True, model_kwargs={"attn_implementation": "flash_attention_2", "torch_dtype": torch.float16}) |
|
|
|
queries = ["中国的首都是哪里?"] |
|
passages = ["beijing", "shanghai"] |
|
|
|
INSTRUCTION = "Query: " |
|
|
|
embeddings_query = model.encode(queries, prompt=INSTRUCTION) |
|
embeddings_doc = model.encode(passages) |
|
|
|
scores = (embeddings_query @ embeddings_doc.T) |
|
print(scores.tolist()) # [[0.35365450382232666, 0.18592746555805206]] |
|
``` |
|
|
|
## 实验结果 Evaluation Results |
|
|
|
### 中文与英文检索结果 CN/EN Retrieval Results |
|
|
|
| 模型 Model | C-MTEB/Retrieval (NDCG@10) | BEIR (NDCG@10) | |
|
|------------------------------|-------------------|---------------| |
|
| bge-large-zh-v1.5 | 70.46 | - | |
|
| gte-large-zh | 72.49 | - | |
|
| Zhihui_LLM_Embedding | 76.74 | | |
|
| bge-large-en-v1.5 | - | 54.29 | |
|
| gte-en-large-v1.5 | - | 57.91 | |
|
| NV-Retriever-v1 | - | 60.9 | |
|
| bge-en-icl | - | 62.16 | |
|
| NV-Embed-v2 | - | 62.65 | |
|
| me5-large | 63.66 | 51.43 | |
|
| bge-m3(Dense) | 65.43 | 48.82 | |
|
| gte-multilingual-base(Dense) | 71.95 | 51.08 | |
|
| gte-Qwen2-1.5B-instruct | 71.86 | 58.29 | |
|
| gte-Qwen2-7B-instruct | 76.03 | 60.25 | |
|
| bge-multilingual-gemma2 | 73.73 | 59.24 | |
|
| MiniCPM-Embedding | **76.76** | 58.56 | |
|
| MiniCPM-Embedding+MiniCPM-Reranker | 77.08 | 61.61 | |
|
|
|
### 中英跨语言检索结果 CN-EN Cross-lingual Retrieval Results |
|
|
|
| 模型 Model | MKQA En-Zh_CN (Recall@20) | NeuCLIR22 (NDCG@10) | NeuCLIR23 (NDCG@10) | |
|
|------------------------------|--------------------|--------------------|--------------------| |
|
| me5-large | 44.3 | 9.01 | 25.33 | |
|
| bge-m3(Dense) | 66.4 | 30.49 | 41.09 | |
|
| gte-multilingual-base(Dense) | 68.2 | 39.46 | 45.86 | |
|
| gte-Qwen2-1.5B-instruct | 68.52 | 49.11 | 45.05 | |
|
| gte-Qwen2-7B-instruct | 68.27 | 49.14 | 49.6 | |
|
| MiniCPM-Embedding | **72.95** | **52.65** | **49.95** | |
|
| MiniCPM-Embedding+MiniCPM-Reranker | 74.33 | 53.21 | 54.12 | |
|
|
|
## 许可证 License |
|
|
|
- 本仓库中代码依照 [Apache-2.0 协议](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE)开源。 |
|
- MiniCPM-Embedding 模型权重的使用则需要遵循 [MiniCPM 模型协议](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md)。 |
|
- MiniCPM-Embedding 模型权重对学术研究完全开放。如需将模型用于商业用途,请填写[此问卷](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g)。 |
|
|
|
* The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License. |
|
* The usage of MiniCPM-Embedding model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md). |
|
* The models and weights of MiniCPM-Embedding are completely free for academic research. After filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, MiniCPM-Embedding weights are also available for free commercial use. |