Add processor and image processor
#61
by
HwwwH
- opened
- configuration.json +1 -0
- image_processing_minicpmv.py +402 -0
- modeling_minicpmv.py +70 -408
- preprocessor_config.json +20 -0
- processing_minicpmv.py +247 -0
- tokenization_minicpmv_fast.py +51 -0
- tokenizer_config.json +2 -2
configuration.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"framework":"Pytorch","task":"multimodal-dialogue"}
|
image_processing_minicpmv.py
ADDED
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Union, Dict, Any
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import math
|
5 |
+
import PIL.Image
|
6 |
+
import PIL.ImageSequence
|
7 |
+
import numpy as np
|
8 |
+
import PIL
|
9 |
+
from PIL import Image
|
10 |
+
|
11 |
+
from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device
|
12 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
13 |
+
from transformers import AutoImageProcessor
|
14 |
+
from transformers.image_transforms import to_channel_dimension_format
|
15 |
+
from transformers.image_utils import (
|
16 |
+
ImageInput,
|
17 |
+
make_list_of_images,
|
18 |
+
valid_images,
|
19 |
+
is_torch_tensor,
|
20 |
+
to_numpy_array,
|
21 |
+
infer_channel_dimension_format,
|
22 |
+
ChannelDimension
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
def recursive_converter(converter, value):
|
27 |
+
if isinstance(value, list):
|
28 |
+
new_value = []
|
29 |
+
for v in value:
|
30 |
+
new_value += [recursive_converter(converter, v)]
|
31 |
+
return new_value
|
32 |
+
else:
|
33 |
+
return converter(value)
|
34 |
+
|
35 |
+
|
36 |
+
class MiniCPMVBatchFeature(BatchFeature):
|
37 |
+
r"""
|
38 |
+
Extend from BatchFeature for supporting various image size
|
39 |
+
"""
|
40 |
+
def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None):
|
41 |
+
super().__init__(data)
|
42 |
+
self.convert_to_tensors(tensor_type=tensor_type)
|
43 |
+
|
44 |
+
def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None):
|
45 |
+
if tensor_type is None:
|
46 |
+
return self
|
47 |
+
|
48 |
+
is_tensor, as_tensor = self._get_is_as_tensor_fns(tensor_type)
|
49 |
+
|
50 |
+
def converter(value):
|
51 |
+
try:
|
52 |
+
if not is_tensor(value):
|
53 |
+
tensor = as_tensor(value)
|
54 |
+
return tensor
|
55 |
+
except: # noqa E722
|
56 |
+
if key == "overflowing_values":
|
57 |
+
raise ValueError("Unable to create tensor returning overflowing values of different lengths. ")
|
58 |
+
raise ValueError(
|
59 |
+
"Unable to create tensor, you should probably activate padding "
|
60 |
+
"with 'padding=True' to have batched tensors with the same length."
|
61 |
+
)
|
62 |
+
|
63 |
+
|
64 |
+
for key, value in self.items():
|
65 |
+
self[key] = recursive_converter(converter, value)
|
66 |
+
return self
|
67 |
+
|
68 |
+
def to(self, *args, **kwargs) -> "MiniCPMVBatchFeature":
|
69 |
+
requires_backends(self, ["torch"])
|
70 |
+
import torch
|
71 |
+
|
72 |
+
def cast_tensor(v):
|
73 |
+
# check if v is a floating point
|
74 |
+
if torch.is_floating_point(v):
|
75 |
+
# cast and send to device
|
76 |
+
return v.to(*args, **kwargs)
|
77 |
+
elif device is not None:
|
78 |
+
return v.to(device=device)
|
79 |
+
else:
|
80 |
+
return v
|
81 |
+
|
82 |
+
new_data = {}
|
83 |
+
device = kwargs.get("device")
|
84 |
+
# Check if the args are a device or a dtype
|
85 |
+
if device is None and len(args) > 0:
|
86 |
+
# device should be always the first argument
|
87 |
+
arg = args[0]
|
88 |
+
if is_torch_dtype(arg):
|
89 |
+
# The first argument is a dtype
|
90 |
+
pass
|
91 |
+
elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int):
|
92 |
+
device = arg
|
93 |
+
else:
|
94 |
+
# it's something else
|
95 |
+
raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.")
|
96 |
+
# We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor`
|
97 |
+
for k, v in self.items():
|
98 |
+
new_data[k] = recursive_converter(cast_tensor, v)
|
99 |
+
self.data = new_data
|
100 |
+
return self
|
101 |
+
|
102 |
+
|
103 |
+
class MiniCPMVImageProcessor(BaseImageProcessor):
|
104 |
+
model_input_names = ["pixel_values"]
|
105 |
+
|
106 |
+
def __init__(
|
107 |
+
self,
|
108 |
+
max_slice_nums=9,
|
109 |
+
scale_resolution=448,
|
110 |
+
patch_size=14,
|
111 |
+
**kwargs):
|
112 |
+
super().__init__(**kwargs)
|
113 |
+
self.max_slice_nums = max_slice_nums
|
114 |
+
self.scale_resolution = scale_resolution
|
115 |
+
self.patch_size = patch_size
|
116 |
+
self.image_feature_size = kwargs.pop("image_feature_size", 64)
|
117 |
+
self.im_start_token = kwargs.pop("im_start", "<image>")
|
118 |
+
self.im_end_token = kwargs.pop("im_end", "</image>")
|
119 |
+
self.slice_start_token = kwargs.pop("slice_start", "<slice>")
|
120 |
+
self.slice_end_token = kwargs.pop("slice_end", "</slice>")
|
121 |
+
self.unk_token = kwargs.pop("unk", "<unk>")
|
122 |
+
self.mean = np.array(kwargs.pop("norm_mean", [0.5, 0.5, 0.5]))
|
123 |
+
self.std = np.array(kwargs.pop("norm_std", [0.5, 0.5, 0.5]))
|
124 |
+
self.version = kwargs.pop("version", 2.0)
|
125 |
+
|
126 |
+
def ensure_divide(self, length, patch_size):
|
127 |
+
return max(round(length / patch_size) * patch_size, patch_size)
|
128 |
+
|
129 |
+
def find_best_resize(self,
|
130 |
+
original_size,
|
131 |
+
scale_resolution,
|
132 |
+
patch_size,
|
133 |
+
allow_upscale=False):
|
134 |
+
width, height = original_size
|
135 |
+
if (width * height >
|
136 |
+
scale_resolution * scale_resolution) or allow_upscale:
|
137 |
+
r = width / height
|
138 |
+
height = int(scale_resolution / math.sqrt(r))
|
139 |
+
width = int(height * r)
|
140 |
+
best_width = self.ensure_divide(width, patch_size)
|
141 |
+
best_height = self.ensure_divide(height, patch_size)
|
142 |
+
return (best_width, best_height)
|
143 |
+
|
144 |
+
def get_refine_size(self,
|
145 |
+
original_size,
|
146 |
+
grid,
|
147 |
+
scale_resolution,
|
148 |
+
patch_size,
|
149 |
+
allow_upscale=False):
|
150 |
+
width, height = original_size
|
151 |
+
grid_x, grid_y = grid
|
152 |
+
|
153 |
+
refine_width = self.ensure_divide(width, grid_x)
|
154 |
+
refine_height = self.ensure_divide(height, grid_y)
|
155 |
+
|
156 |
+
grid_width = refine_width / grid_x
|
157 |
+
grid_height = refine_height / grid_y
|
158 |
+
|
159 |
+
best_grid_size = self.find_best_resize((grid_width, grid_height),
|
160 |
+
scale_resolution,
|
161 |
+
patch_size,
|
162 |
+
allow_upscale=allow_upscale)
|
163 |
+
refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
|
164 |
+
return refine_size
|
165 |
+
|
166 |
+
def split_to_patches(self, image, grid):
|
167 |
+
patches = []
|
168 |
+
width, height = image.size
|
169 |
+
grid_x = int(width / grid[0])
|
170 |
+
grid_y = int(height / grid[1])
|
171 |
+
for i in range(0, height, grid_y):
|
172 |
+
images = []
|
173 |
+
for j in range(0, width, grid_x):
|
174 |
+
box = (j, i, j + grid_x, i + grid_y)
|
175 |
+
patch = image.crop(box)
|
176 |
+
images.append(patch)
|
177 |
+
patches.append(images)
|
178 |
+
return patches
|
179 |
+
|
180 |
+
def slice_image(
|
181 |
+
self, image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
|
182 |
+
):
|
183 |
+
original_size = image.size
|
184 |
+
original_width, original_height = original_size
|
185 |
+
log_ratio = math.log(original_width / original_height)
|
186 |
+
ratio = original_width * original_height / (scale_resolution * scale_resolution)
|
187 |
+
multiple = min(math.ceil(ratio), max_slice_nums)
|
188 |
+
|
189 |
+
source_image = None
|
190 |
+
best_grid = None
|
191 |
+
patches = []
|
192 |
+
|
193 |
+
if multiple <= 1 or never_split:
|
194 |
+
# dont need to slice, upsample
|
195 |
+
best_size = self.find_best_resize(
|
196 |
+
original_size, scale_resolution, patch_size, allow_upscale=True
|
197 |
+
)
|
198 |
+
source_image = image.resize(best_size, resample=Image.Resampling.BICUBIC)
|
199 |
+
else:
|
200 |
+
candidate_split_grids_nums = []
|
201 |
+
for i in [multiple - 1, multiple, multiple + 1]:
|
202 |
+
if i == 1 or i > max_slice_nums:
|
203 |
+
continue
|
204 |
+
candidate_split_grids_nums.append(i)
|
205 |
+
|
206 |
+
# source image, down-sampling and ensure divided by patch_size
|
207 |
+
best_resize = self.find_best_resize(original_size, scale_resolution, patch_size)
|
208 |
+
source_image = image.copy().resize(best_resize, resample=Image.Resampling.BICUBIC)
|
209 |
+
candidate_grids = []
|
210 |
+
|
211 |
+
# find best grid
|
212 |
+
for split_grids_nums in candidate_split_grids_nums:
|
213 |
+
m = 1
|
214 |
+
while m <= split_grids_nums:
|
215 |
+
if split_grids_nums % m == 0:
|
216 |
+
candidate_grids.append([m, split_grids_nums // m])
|
217 |
+
m += 1
|
218 |
+
|
219 |
+
best_grid = [1, 1]
|
220 |
+
min_error = float("inf")
|
221 |
+
for grid in candidate_grids:
|
222 |
+
error = abs(log_ratio - math.log(grid[0] / grid[1]))
|
223 |
+
if error < min_error:
|
224 |
+
best_grid = grid
|
225 |
+
min_error = error
|
226 |
+
|
227 |
+
refine_size = self.get_refine_size(
|
228 |
+
original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
|
229 |
+
)
|
230 |
+
|
231 |
+
refine_image = image.resize(refine_size, resample=Image.Resampling.BICUBIC)
|
232 |
+
patches = self.split_to_patches(refine_image, best_grid)
|
233 |
+
|
234 |
+
return source_image, patches, best_grid
|
235 |
+
|
236 |
+
def get_grid_placeholder(self, grid):
|
237 |
+
if grid is None:
|
238 |
+
return ""
|
239 |
+
image_placeholder = (
|
240 |
+
self.im_start_token
|
241 |
+
+ self.unk_token * self.image_feature_size
|
242 |
+
+ self.im_end_token
|
243 |
+
)
|
244 |
+
|
245 |
+
cols = grid[0]
|
246 |
+
rows = grid[1]
|
247 |
+
slices = []
|
248 |
+
for i in range(rows):
|
249 |
+
lines = []
|
250 |
+
for j in range(cols):
|
251 |
+
lines.append(image_placeholder)
|
252 |
+
slices.append("".join(lines))
|
253 |
+
|
254 |
+
slice_placeholder = self.slice_start_token + "\n".join(slices) + self.slice_end_token
|
255 |
+
return slice_placeholder
|
256 |
+
|
257 |
+
def get_sliced_images(self, image):
|
258 |
+
slice_images = []
|
259 |
+
|
260 |
+
source_image, patches, sliced_grid = self.slice_image(
|
261 |
+
image,
|
262 |
+
self.max_slice_nums, # default: 9
|
263 |
+
self.scale_resolution, # default: 448
|
264 |
+
self.patch_size # default: 14
|
265 |
+
)
|
266 |
+
slice_images.append(source_image)
|
267 |
+
|
268 |
+
if len(patches) > 0:
|
269 |
+
for i in range(len(patches)):
|
270 |
+
for j in range(len(patches[0])):
|
271 |
+
slice_images.append(patches[i][j])
|
272 |
+
return slice_images
|
273 |
+
|
274 |
+
def get_sliced_grid(self, image_size):
|
275 |
+
original_width, original_height = image_size
|
276 |
+
log_ratio = math.log(original_width / original_height)
|
277 |
+
ratio = original_width * original_height / (self.scale_resolution * self.scale_resolution)
|
278 |
+
multiple = min(math.ceil(ratio), self.max_slice_nums)
|
279 |
+
if multiple <= 1:
|
280 |
+
return None
|
281 |
+
candidate_split_grids_nums = []
|
282 |
+
for i in [multiple - 1, multiple, multiple + 1]:
|
283 |
+
if i == 1 or i > self.max_slice_nums:
|
284 |
+
continue
|
285 |
+
candidate_split_grids_nums.append(i)
|
286 |
+
|
287 |
+
candidate_grids = []
|
288 |
+
for split_grids_nums in candidate_split_grids_nums:
|
289 |
+
m = 1
|
290 |
+
while m <= split_grids_nums:
|
291 |
+
if split_grids_nums % m == 0:
|
292 |
+
candidate_grids.append([m, split_grids_nums // m])
|
293 |
+
m += 1
|
294 |
+
|
295 |
+
best_grid = [1, 1]
|
296 |
+
min_error = float("inf")
|
297 |
+
for grid in candidate_grids:
|
298 |
+
error = abs(log_ratio - math.log(grid[0] / grid[1]))
|
299 |
+
if error < min_error:
|
300 |
+
best_grid = grid
|
301 |
+
min_error = error
|
302 |
+
|
303 |
+
return best_grid
|
304 |
+
|
305 |
+
def get_slice_image_placeholder(self, image_size):
|
306 |
+
grid = self.get_sliced_grid(image_size=image_size)
|
307 |
+
return (
|
308 |
+
self.im_start_token
|
309 |
+
+ self.unk_token * self.image_feature_size
|
310 |
+
+ self.im_end_token
|
311 |
+
) + self.get_grid_placeholder(grid=grid)
|
312 |
+
|
313 |
+
def to_pil_image(self, image, rescale=None) -> PIL.Image.Image:
|
314 |
+
"""
|
315 |
+
Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
|
316 |
+
needed.
|
317 |
+
|
318 |
+
Args:
|
319 |
+
image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor`):
|
320 |
+
The image to convert to the PIL Image format.
|
321 |
+
rescale (`bool`, *optional*):
|
322 |
+
Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will
|
323 |
+
default to `True` if the image type is a floating type, `False` otherwise.
|
324 |
+
"""
|
325 |
+
if isinstance(image, PIL.Image.Image):
|
326 |
+
return image
|
327 |
+
if is_torch_tensor(image):
|
328 |
+
image = image.numpy()
|
329 |
+
|
330 |
+
if isinstance(image, np.ndarray):
|
331 |
+
if rescale is None:
|
332 |
+
# rescale default to the array being of floating type.
|
333 |
+
rescale = isinstance(image.flat[0], np.floating)
|
334 |
+
# If the channel as been moved to first dim, we put it back at the end.
|
335 |
+
if image.ndim == 3 and image.shape[0] in [1, 3]:
|
336 |
+
image = image.transpose(1, 2, 0)
|
337 |
+
if rescale:
|
338 |
+
image = image * 255
|
339 |
+
image = image.astype(np.uint8)
|
340 |
+
return PIL.Image.fromarray(image)
|
341 |
+
return image
|
342 |
+
|
343 |
+
def reshape_by_patch(self, image):
|
344 |
+
"""
|
345 |
+
:param image: shape [3, H, W]
|
346 |
+
:param patch_size:
|
347 |
+
:return: [3, patch_size, HW/patch_size]
|
348 |
+
"""
|
349 |
+
image = torch.from_numpy(image)
|
350 |
+
patch_size = self.patch_size
|
351 |
+
patches = torch.nn.functional.unfold(
|
352 |
+
image,
|
353 |
+
(patch_size, patch_size),
|
354 |
+
stride=(patch_size, patch_size)
|
355 |
+
)
|
356 |
+
|
357 |
+
patches = patches.reshape(image.size(0), patch_size, patch_size, -1)
|
358 |
+
patches = patches.permute(0, 1, 3, 2).reshape(image.size(0), patch_size, -1)
|
359 |
+
return patches.numpy()
|
360 |
+
|
361 |
+
def preprocess(
|
362 |
+
self,
|
363 |
+
images: ImageInput,
|
364 |
+
do_pad: Optional[bool] = True, # TODO: add pad for MiniCPM-Llama3-V-2_5
|
365 |
+
return_tensors: Optional[Union[str, TensorType]] = None
|
366 |
+
) -> MiniCPMVBatchFeature:
|
367 |
+
images = make_list_of_images(images)
|
368 |
+
|
369 |
+
if not valid_images(images):
|
370 |
+
raise ValueError(
|
371 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
372 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
373 |
+
)
|
374 |
+
|
375 |
+
images = [self.to_pil_image(image).convert("RGB") for image in images]
|
376 |
+
input_data_format = infer_channel_dimension_format(np.array(images[0]))
|
377 |
+
|
378 |
+
new_images = []
|
379 |
+
image_sizes = [image.size for image in images]
|
380 |
+
tgt_sizes = []
|
381 |
+
for image in images:
|
382 |
+
image_patches = self.get_sliced_images(image)
|
383 |
+
image_patches = [to_numpy_array(image).astype(np.float32) / 255 for image in image_patches]
|
384 |
+
image_patches = [
|
385 |
+
self.normalize(image=image, mean=self.mean, std=self.std, input_data_format=input_data_format)
|
386 |
+
for image in image_patches
|
387 |
+
]
|
388 |
+
image_patches = [
|
389 |
+
to_channel_dimension_format(image, ChannelDimension.FIRST, input_channel_dim=input_data_format)
|
390 |
+
for image in image_patches
|
391 |
+
]
|
392 |
+
for slice_image in image_patches:
|
393 |
+
new_images.append(self.reshape_by_patch(slice_image))
|
394 |
+
tgt_sizes.append(np.array((slice_image.shape[1] // self.patch_size, slice_image.shape[2] // self.patch_size)))
|
395 |
+
|
396 |
+
if tgt_sizes:
|
397 |
+
tgt_sizes = np.vstack(tgt_sizes)
|
398 |
+
return MiniCPMVBatchFeature(
|
399 |
+
data={"pixel_values": new_images, "image_sizes": image_sizes, "tgt_sizes": tgt_sizes}, tensor_type=return_tensors
|
400 |
+
)
|
401 |
+
|
402 |
+
AutoImageProcessor.register("MiniCPMVImageProcessor", MiniCPMVImageProcessor)
|
modeling_minicpmv.py
CHANGED
@@ -1,14 +1,13 @@
|
|
1 |
import math
|
2 |
-
from typing import List, Optional
|
3 |
import json
|
4 |
import torch
|
5 |
-
import torchvision
|
6 |
from threading import Thread
|
7 |
from copy import deepcopy
|
8 |
from PIL import Image
|
9 |
from torchvision import transforms
|
10 |
-
from transformers import
|
11 |
from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer
|
|
|
12 |
|
13 |
from .configuration_minicpm import MiniCPMVConfig
|
14 |
from .resampler import Resampler
|
@@ -42,13 +41,13 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
42 |
|
43 |
return model
|
44 |
|
45 |
-
def init_resampler(self, embed_dim, vision_dim
|
46 |
return Resampler(
|
47 |
num_queries=self.config.query_num,
|
48 |
embed_dim=embed_dim,
|
49 |
num_heads=embed_dim // 128,
|
50 |
kv_dim=vision_dim,
|
51 |
-
adaptive=True
|
52 |
)
|
53 |
|
54 |
def init_transform(self):
|
@@ -60,13 +59,25 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
60 |
),
|
61 |
]
|
62 |
)
|
63 |
-
|
64 |
def get_input_embeddings(self):
|
65 |
return self.llm.get_input_embeddings()
|
66 |
|
67 |
def set_input_embeddings(self, value):
|
68 |
self.llm.embed_tokens = value
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
def get_vllm_embedding(self, data):
|
71 |
if 'vision_hidden_states' not in data:
|
72 |
dtype = self.llm.model.embed_tokens.weight.dtype
|
@@ -79,7 +90,7 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
79 |
for pixel_values in pixel_values_list:
|
80 |
img_cnt.append(len(pixel_values))
|
81 |
all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values])
|
82 |
-
|
83 |
# exist image
|
84 |
if all_pixel_values:
|
85 |
tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)
|
@@ -107,7 +118,6 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
107 |
single_pixel_values = single_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
|
108 |
single_vision_embedding = self.vpm(single_pixel_values.type(dtype)).last_hidden_state
|
109 |
single_vision_embedding = self.resampler(single_vision_embedding, single_tgt_size.unsqueeze(0))
|
110 |
-
|
111 |
vision_embedding.append(single_vision_embedding)
|
112 |
vision_embedding = torch.vstack(vision_embedding)
|
113 |
|
@@ -153,13 +163,14 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
153 |
image_indices = torch.stack(
|
154 |
[torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
|
155 |
).to(vllm_embedding.device)
|
|
|
156 |
cur_vllm_emb.scatter_(0, image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
|
157 |
cur_vs_hs.view(-1, cur_vs_hs.shape[-1]))
|
158 |
elif self.training:
|
159 |
cur_vllm_emb += cur_vs_hs[0].mean() * 0
|
160 |
-
|
161 |
-
return vllm_embedding, vision_hidden_states
|
162 |
|
|
|
|
|
163 |
def forward(self, data, **kwargs):
|
164 |
vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
|
165 |
position_ids = data["position_ids"]
|
@@ -173,47 +184,18 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
173 |
**kwargs
|
174 |
)
|
175 |
|
176 |
-
def
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
image_end_tokens = torch.where(input_ids == tokenizer.im_end_id)[0]
|
187 |
-
valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
|
188 |
-
image_bound = torch.hstack(
|
189 |
-
[
|
190 |
-
image_start_tokens[:valid_image_nums].unsqueeze(-1),
|
191 |
-
image_end_tokens[:valid_image_nums].unsqueeze(-1),
|
192 |
-
]
|
193 |
-
)
|
194 |
-
|
195 |
-
model_input = {}
|
196 |
-
model_input["input_ids"] = input_ids.unsqueeze(0).to(self.device)
|
197 |
-
model_input["image_bound"] = image_bound
|
198 |
-
|
199 |
-
return model_input
|
200 |
-
|
201 |
-
def _process_list(
|
202 |
-
self, tokenizer, input_id_list, max_inp_length: Optional[int] = None
|
203 |
-
):
|
204 |
-
pad_keys = ["input_ids"]
|
205 |
-
input_tensors = []
|
206 |
-
for input_ids in input_id_list:
|
207 |
-
input_tensors.append(
|
208 |
-
self._convert_to_tensors(tokenizer, input_ids, max_inp_length)
|
209 |
-
)
|
210 |
-
padded = {}
|
211 |
-
for key in pad_keys:
|
212 |
-
padded[key] = pad(input_tensors, key, padding_side="left").to(self.device)
|
213 |
-
padded["image_bound"] = [i["image_bound"] for i in input_tensors]
|
214 |
-
return padded
|
215 |
|
216 |
-
def _decode(self, inputs_embeds, tokenizer, **kwargs):
|
217 |
terminators = [
|
218 |
tokenizer.eos_token_id,
|
219 |
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
@@ -224,7 +206,9 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
224 |
eos_token_id=terminators,
|
225 |
**kwargs
|
226 |
)
|
227 |
-
|
|
|
|
|
228 |
|
229 |
def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
|
230 |
terminators = [
|
@@ -245,93 +229,20 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
245 |
|
246 |
return streamer
|
247 |
|
248 |
-
def _decode_text(self, result_ids, tokenizer):
|
249 |
-
result_text = []
|
250 |
-
for result in result_ids:
|
251 |
-
result = result[result != 0]
|
252 |
-
if result[0] == tokenizer.bos_id:
|
253 |
-
result = result[1:]
|
254 |
-
if result[-1] == tokenizer.eos_id or result[-1] == tokenizer.eot_id:
|
255 |
-
result = result[:-1]
|
256 |
-
result_text.append(tokenizer.decode(result).strip())
|
257 |
-
return result_text
|
258 |
-
|
259 |
-
def slice_image(self, image):
|
260 |
-
return slice_image(
|
261 |
-
image,
|
262 |
-
self.config.slice_config.max_slice_nums,
|
263 |
-
self.config.slice_config.scale_resolution,
|
264 |
-
self.config.slice_config.patch_size,
|
265 |
-
)
|
266 |
-
|
267 |
-
def get_slice_image_placeholder(self, image, tokenizer):
|
268 |
-
image_placeholder = (
|
269 |
-
tokenizer.im_start
|
270 |
-
+ tokenizer.unk_token * self.config.query_num
|
271 |
-
+ tokenizer.im_end
|
272 |
-
)
|
273 |
-
|
274 |
-
slice_images = []
|
275 |
-
|
276 |
-
source_image, patches, best_grid = slice_image(
|
277 |
-
image,
|
278 |
-
self.config.slice_config.max_slice_nums,
|
279 |
-
self.config.slice_config.scale_resolution,
|
280 |
-
self.config.slice_config.patch_size,
|
281 |
-
)
|
282 |
-
|
283 |
-
slice_images.append(source_image)
|
284 |
-
final_placeholder = image_placeholder
|
285 |
-
|
286 |
-
if len(patches) > 0:
|
287 |
-
for i in range(len(patches)):
|
288 |
-
for j in range(len(patches[0])):
|
289 |
-
slice_images.append(patches[i][j])
|
290 |
-
|
291 |
-
final_placeholder += get_grid_placeholder(
|
292 |
-
tokenizer, best_grid, self.config.query_num
|
293 |
-
)
|
294 |
-
|
295 |
-
return slice_images, final_placeholder
|
296 |
-
|
297 |
-
def reshape_by_patch(self, image_tensor):
|
298 |
-
"""
|
299 |
-
:param image_tensor: shape [3, H, W]
|
300 |
-
:param patch_size:
|
301 |
-
:return: [3, patch_size, HW/patch_size]
|
302 |
-
"""
|
303 |
-
patch_size = self.config.patch_size
|
304 |
-
patches = torch.nn.functional.unfold(
|
305 |
-
image_tensor,
|
306 |
-
(patch_size, patch_size),
|
307 |
-
stride=(patch_size, patch_size)
|
308 |
-
)
|
309 |
-
|
310 |
-
patches = patches.reshape(image_tensor.size(0), patch_size, patch_size, -1)
|
311 |
-
patches = patches.permute(0, 1, 3, 2).reshape(image_tensor.size(0), patch_size, -1)
|
312 |
-
return patches
|
313 |
-
|
314 |
def generate(
|
315 |
self,
|
316 |
-
|
317 |
-
img_list=None,
|
318 |
-
tgt_sizes=None,
|
319 |
tokenizer=None,
|
320 |
-
max_inp_length: Optional[int] = None,
|
321 |
vision_hidden_states=None,
|
322 |
-
return_vision_hidden_states=False,
|
323 |
stream=False,
|
324 |
**kwargs
|
325 |
):
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
if img_list
|
330 |
img_list = [[] for i in range(bs)]
|
331 |
assert bs == len(img_list)
|
332 |
-
|
333 |
-
model_inputs = self._process_list(tokenizer, input_id_list, max_inp_length)
|
334 |
-
|
335 |
if vision_hidden_states is None:
|
336 |
pixel_values = []
|
337 |
for i in range(bs):
|
@@ -347,19 +258,17 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
347 |
else:
|
348 |
model_inputs["vision_hidden_states"] = vision_hidden_states
|
349 |
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
) = self.get_vllm_embedding(model_inputs)
|
355 |
-
|
356 |
-
if stream:
|
357 |
-
result = self._decode_stream(model_inputs["inputs_embeds"], tokenizer, **kwargs)
|
358 |
-
else:
|
359 |
-
result = self._decode(model_inputs["inputs_embeds"], tokenizer, **kwargs)
|
360 |
|
361 |
-
|
362 |
-
|
|
|
|
|
|
|
|
|
363 |
|
364 |
return result
|
365 |
|
@@ -368,6 +277,7 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
368 |
image,
|
369 |
msgs,
|
370 |
tokenizer,
|
|
|
371 |
vision_hidden_states=None,
|
372 |
max_new_tokens=1024,
|
373 |
sampling=True,
|
@@ -376,18 +286,20 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
376 |
stream=False,
|
377 |
**kwargs
|
378 |
):
|
|
|
|
|
379 |
if isinstance(msgs, str):
|
380 |
msgs = json.loads(msgs)
|
381 |
-
|
382 |
copy_msgs = deepcopy(msgs)
|
383 |
-
assert len(copy_msgs) > 0, 'msgs is empty'
|
384 |
-
assert sampling or not stream, 'if use stream mode, make sure sampling=True'
|
385 |
|
386 |
-
|
387 |
-
|
|
|
|
|
|
|
|
|
388 |
|
389 |
images = []
|
390 |
-
tgt_sizes = []
|
391 |
for i, msg in enumerate(copy_msgs):
|
392 |
role = msg["role"]
|
393 |
content = msg["content"]
|
@@ -396,41 +308,21 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
396 |
assert role == "user", "The role of first msg should be user"
|
397 |
if isinstance(content, str):
|
398 |
content = [content]
|
399 |
-
|
400 |
cur_msgs = []
|
401 |
for c in content:
|
402 |
if isinstance(c, Image.Image):
|
403 |
-
|
404 |
-
|
405 |
-
slice_images, image_placeholder = self.get_slice_image_placeholder(
|
406 |
-
image, tokenizer
|
407 |
-
)
|
408 |
-
cur_msgs.append(image_placeholder)
|
409 |
-
for slice_image in slice_images:
|
410 |
-
slice_image = self.transform(slice_image)
|
411 |
-
H, W = slice_image.shape[1:]
|
412 |
-
images.append(self.reshape_by_patch(slice_image))
|
413 |
-
tgt_sizes.append(torch.Tensor([H // self.config.patch_size, W // self.config.patch_size]).type(torch.int32))
|
414 |
-
else:
|
415 |
-
images.append(self.transform(image))
|
416 |
-
cur_msgs.append(
|
417 |
-
tokenizer.im_start
|
418 |
-
+ tokenizer.unk_token * self.config.query_num
|
419 |
-
+ tokenizer.im_end
|
420 |
-
)
|
421 |
elif isinstance(c, str):
|
422 |
cur_msgs.append(c)
|
423 |
-
|
424 |
-
|
425 |
-
msg['content'] = '\n'.join(cur_msgs)
|
426 |
-
if tgt_sizes:
|
427 |
-
tgt_sizes = torch.vstack(tgt_sizes)
|
428 |
|
429 |
if system_prompt:
|
430 |
sys_msg = {'role': 'system', 'content': system_prompt}
|
431 |
-
copy_msgs = [sys_msg] + copy_msgs
|
432 |
|
433 |
-
|
|
|
434 |
|
435 |
if sampling:
|
436 |
generation_config = {
|
@@ -449,21 +341,17 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
449 |
generation_config.update(
|
450 |
(k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()
|
451 |
)
|
452 |
-
|
453 |
with torch.inference_mode():
|
454 |
-
res
|
455 |
-
|
456 |
-
max_inp_length=max_inp_length,
|
457 |
-
img_list=[images],
|
458 |
-
tgt_sizes=[tgt_sizes],
|
459 |
tokenizer=tokenizer,
|
460 |
max_new_tokens=max_new_tokens,
|
461 |
vision_hidden_states=vision_hidden_states,
|
462 |
-
return_vision_hidden_states=True,
|
463 |
stream=stream,
|
|
|
464 |
**generation_config
|
465 |
)
|
466 |
-
|
467 |
if stream:
|
468 |
def stream_gen():
|
469 |
for text in res:
|
@@ -474,229 +362,3 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
474 |
else:
|
475 |
answer = res[0]
|
476 |
return answer
|
477 |
-
|
478 |
-
|
479 |
-
class PreTrainedTokenizerFastWrapper(PreTrainedTokenizerFast):
|
480 |
-
def __init__(self, **kwargs):
|
481 |
-
super().__init__(**kwargs)
|
482 |
-
self.eot_token = "<|eot_id|>"
|
483 |
-
self.im_start = "<image>"
|
484 |
-
self.im_end = "</image>"
|
485 |
-
self.ref_start = "<ref>"
|
486 |
-
self.ref_end = "</ref>"
|
487 |
-
self.box_start = "<box>"
|
488 |
-
self.box_end = "</box>"
|
489 |
-
self.quad_start = "<quad>"
|
490 |
-
self.quad_end = "</quad>"
|
491 |
-
self.slice_start = "<slice>"
|
492 |
-
self.slice_end = "</slice>"
|
493 |
-
|
494 |
-
@property
|
495 |
-
def eos_id(self):
|
496 |
-
return self.eos_token_id
|
497 |
-
|
498 |
-
@property
|
499 |
-
def bos_id(self):
|
500 |
-
return self.bos_token_id
|
501 |
-
|
502 |
-
@property
|
503 |
-
def unk_id(self):
|
504 |
-
return self.unk_token_id
|
505 |
-
|
506 |
-
@property
|
507 |
-
def eot_id(self):
|
508 |
-
return self.convert_tokens_to_ids(self.eot_token)
|
509 |
-
|
510 |
-
@property
|
511 |
-
def im_start_id(self):
|
512 |
-
return self.convert_tokens_to_ids(self.im_start)
|
513 |
-
|
514 |
-
@property
|
515 |
-
def im_end_id(self):
|
516 |
-
return self.convert_tokens_to_ids(self.im_end)
|
517 |
-
|
518 |
-
@staticmethod
|
519 |
-
def escape(text: str) -> str:
|
520 |
-
return text
|
521 |
-
|
522 |
-
@staticmethod
|
523 |
-
def unescape(text: str) -> str:
|
524 |
-
return text
|
525 |
-
|
526 |
-
|
527 |
-
def pad(orig_items, key, max_length=None, padding_value=0, padding_side="left"):
|
528 |
-
items = []
|
529 |
-
if isinstance(orig_items[0][key], list):
|
530 |
-
assert isinstance(orig_items[0][key][0], torch.Tensor)
|
531 |
-
for it in orig_items:
|
532 |
-
for tr in it[key]:
|
533 |
-
items.append({key: tr})
|
534 |
-
else:
|
535 |
-
assert isinstance(orig_items[0][key], torch.Tensor)
|
536 |
-
items = orig_items
|
537 |
-
|
538 |
-
batch_size = len(items)
|
539 |
-
shape = items[0][key].shape
|
540 |
-
dim = len(shape)
|
541 |
-
assert dim <= 3
|
542 |
-
if max_length is None:
|
543 |
-
max_length = 0
|
544 |
-
max_length = max(max_length, max(item[key].shape[-1] for item in items))
|
545 |
-
min_length = min(item[key].shape[-1] for item in items)
|
546 |
-
dtype = items[0][key].dtype
|
547 |
-
|
548 |
-
if dim == 1:
|
549 |
-
return torch.cat([item[key] for item in items], dim=0)
|
550 |
-
elif dim == 2:
|
551 |
-
if max_length == min_length:
|
552 |
-
return torch.cat([item[key] for item in items], dim=0)
|
553 |
-
tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
|
554 |
-
else:
|
555 |
-
tensor = (
|
556 |
-
torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype)
|
557 |
-
+ padding_value
|
558 |
-
)
|
559 |
-
|
560 |
-
for i, item in enumerate(items):
|
561 |
-
if dim == 2:
|
562 |
-
if padding_side == "left":
|
563 |
-
tensor[i, -len(item[key][0]) :] = item[key][0].clone()
|
564 |
-
else:
|
565 |
-
tensor[i, : len(item[key][0])] = item[key][0].clone()
|
566 |
-
elif dim == 3:
|
567 |
-
if padding_side == "left":
|
568 |
-
tensor[i, -len(item[key][0]) :, :] = item[key][0].clone()
|
569 |
-
else:
|
570 |
-
tensor[i, : len(item[key][0]), :] = item[key][0].clone()
|
571 |
-
|
572 |
-
return tensor
|
573 |
-
|
574 |
-
|
575 |
-
def slice_image(
|
576 |
-
image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
|
577 |
-
):
|
578 |
-
original_size = image.size
|
579 |
-
original_width, original_height = original_size
|
580 |
-
log_ratio = math.log(original_width / original_height)
|
581 |
-
ratio = original_width * original_height / (scale_resolution * scale_resolution)
|
582 |
-
multiple = min(math.ceil(ratio), max_slice_nums)
|
583 |
-
|
584 |
-
source_image = None
|
585 |
-
best_grid = None
|
586 |
-
patches = []
|
587 |
-
|
588 |
-
if multiple <= 1 or never_split:
|
589 |
-
# dont need to slice, upsample
|
590 |
-
best_size = find_best_resize(
|
591 |
-
original_size, scale_resolution, patch_size, allow_upscale=True
|
592 |
-
)
|
593 |
-
source_image = image.resize(best_size, Image.Resampling.BICUBIC)
|
594 |
-
else:
|
595 |
-
candidate_split_grids_nums = []
|
596 |
-
for i in [multiple - 1, multiple, multiple + 1]:
|
597 |
-
if i == 1 or i > max_slice_nums:
|
598 |
-
continue
|
599 |
-
candidate_split_grids_nums.append(i)
|
600 |
-
|
601 |
-
# source image, down-sampling and ensure divided by patch_size
|
602 |
-
best_resize = find_best_resize(original_size, scale_resolution, patch_size)
|
603 |
-
source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
|
604 |
-
candidate_grids = []
|
605 |
-
|
606 |
-
# find best grid
|
607 |
-
for split_grids_nums in candidate_split_grids_nums:
|
608 |
-
m = 1
|
609 |
-
while m <= split_grids_nums:
|
610 |
-
if split_grids_nums % m == 0:
|
611 |
-
candidate_grids.append([m, split_grids_nums // m])
|
612 |
-
m += 1
|
613 |
-
|
614 |
-
best_grid = [1, 1]
|
615 |
-
min_error = float("inf")
|
616 |
-
for grid in candidate_grids:
|
617 |
-
error = abs(log_ratio - math.log(grid[0] / grid[1]))
|
618 |
-
if error < min_error:
|
619 |
-
best_grid = grid
|
620 |
-
min_error = error
|
621 |
-
|
622 |
-
refine_size = get_refine_size(
|
623 |
-
original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
|
624 |
-
)
|
625 |
-
|
626 |
-
refine_image = image.resize(refine_size, Image.Resampling.BICUBIC)
|
627 |
-
patches = split_to_patches(refine_image, best_grid)
|
628 |
-
|
629 |
-
return source_image, patches, best_grid
|
630 |
-
|
631 |
-
|
632 |
-
def ensure_divide(length, patch_size):
|
633 |
-
return max(round(length / patch_size) * patch_size, patch_size)
|
634 |
-
|
635 |
-
|
636 |
-
def find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=False):
|
637 |
-
width, height = original_size
|
638 |
-
if (width * height > scale_resolution * scale_resolution) or allow_upscale:
|
639 |
-
r = width / height
|
640 |
-
height = int(scale_resolution / math.sqrt(r))
|
641 |
-
width = int(height * r)
|
642 |
-
best_width = ensure_divide(width, patch_size)
|
643 |
-
best_height = ensure_divide(height, patch_size)
|
644 |
-
return (best_width, best_height)
|
645 |
-
|
646 |
-
|
647 |
-
def get_refine_size(
|
648 |
-
original_size, grid, scale_resolution, patch_size, allow_upscale=False
|
649 |
-
):
|
650 |
-
width, height = original_size
|
651 |
-
grid_x, grid_y = grid
|
652 |
-
|
653 |
-
refine_width = ensure_divide(width, grid_x)
|
654 |
-
refine_height = ensure_divide(height, grid_y)
|
655 |
-
|
656 |
-
grid_width = refine_width / grid_x
|
657 |
-
grid_height = refine_height / grid_y
|
658 |
-
|
659 |
-
best_grid_size = find_best_resize(
|
660 |
-
(grid_width, grid_height),
|
661 |
-
scale_resolution,
|
662 |
-
patch_size,
|
663 |
-
allow_upscale=allow_upscale,
|
664 |
-
)
|
665 |
-
|
666 |
-
refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
|
667 |
-
|
668 |
-
return refine_size
|
669 |
-
|
670 |
-
|
671 |
-
def split_to_patches(image, grid):
|
672 |
-
patches = []
|
673 |
-
width, height = image.size
|
674 |
-
grid_x = int(width / grid[0])
|
675 |
-
grid_y = int(height / grid[1])
|
676 |
-
|
677 |
-
for i in range(0, height, grid_y):
|
678 |
-
images = []
|
679 |
-
for j in range(0, width, grid_x):
|
680 |
-
box = (j, i, j + grid_x, i + grid_y)
|
681 |
-
patch = image.crop(box)
|
682 |
-
images.append(patch)
|
683 |
-
patches.append(images)
|
684 |
-
|
685 |
-
return patches
|
686 |
-
|
687 |
-
|
688 |
-
def get_grid_placeholder(tokenizer, grid, query_num):
|
689 |
-
image_placeholder = (
|
690 |
-
tokenizer.im_start + tokenizer.unk_token * query_num + tokenizer.im_end
|
691 |
-
)
|
692 |
-
|
693 |
-
cols = grid[0]
|
694 |
-
rows = grid[1]
|
695 |
-
slices = []
|
696 |
-
for i in range(rows):
|
697 |
-
lines = []
|
698 |
-
for j in range(cols):
|
699 |
-
lines.append(image_placeholder)
|
700 |
-
slices.append("".join(lines))
|
701 |
-
slice_placeholder = tokenizer.slice_start + "\n".join(slices) + tokenizer.slice_end
|
702 |
-
return slice_placeholder
|
|
|
1 |
import math
|
|
|
2 |
import json
|
3 |
import torch
|
|
|
4 |
from threading import Thread
|
5 |
from copy import deepcopy
|
6 |
from PIL import Image
|
7 |
from torchvision import transforms
|
8 |
+
from transformers import LlamaPreTrainedModel, LlamaForCausalLM, TextIteratorStreamer
|
9 |
from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer
|
10 |
+
from transformers import AutoProcessor
|
11 |
|
12 |
from .configuration_minicpm import MiniCPMVConfig
|
13 |
from .resampler import Resampler
|
|
|
41 |
|
42 |
return model
|
43 |
|
44 |
+
def init_resampler(self, embed_dim, vision_dim):
|
45 |
return Resampler(
|
46 |
num_queries=self.config.query_num,
|
47 |
embed_dim=embed_dim,
|
48 |
num_heads=embed_dim // 128,
|
49 |
kv_dim=vision_dim,
|
50 |
+
adaptive=True
|
51 |
)
|
52 |
|
53 |
def init_transform(self):
|
|
|
59 |
),
|
60 |
]
|
61 |
)
|
62 |
+
|
63 |
def get_input_embeddings(self):
|
64 |
return self.llm.get_input_embeddings()
|
65 |
|
66 |
def set_input_embeddings(self, value):
|
67 |
self.llm.embed_tokens = value
|
68 |
+
|
69 |
+
def get_output_embeddings(self):
|
70 |
+
return self.llm.lm_head
|
71 |
+
|
72 |
+
def set_output_embeddings(self, new_embeddings):
|
73 |
+
self.llm.lm_head = new_embeddings
|
74 |
+
|
75 |
+
def set_decoder(self, decoder):
|
76 |
+
self.llm = decoder
|
77 |
+
|
78 |
+
def get_decoder(self):
|
79 |
+
return self.llm
|
80 |
+
|
81 |
def get_vllm_embedding(self, data):
|
82 |
if 'vision_hidden_states' not in data:
|
83 |
dtype = self.llm.model.embed_tokens.weight.dtype
|
|
|
90 |
for pixel_values in pixel_values_list:
|
91 |
img_cnt.append(len(pixel_values))
|
92 |
all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values])
|
93 |
+
|
94 |
# exist image
|
95 |
if all_pixel_values:
|
96 |
tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)
|
|
|
118 |
single_pixel_values = single_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
|
119 |
single_vision_embedding = self.vpm(single_pixel_values.type(dtype)).last_hidden_state
|
120 |
single_vision_embedding = self.resampler(single_vision_embedding, single_tgt_size.unsqueeze(0))
|
|
|
121 |
vision_embedding.append(single_vision_embedding)
|
122 |
vision_embedding = torch.vstack(vision_embedding)
|
123 |
|
|
|
163 |
image_indices = torch.stack(
|
164 |
[torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
|
165 |
).to(vllm_embedding.device)
|
166 |
+
|
167 |
cur_vllm_emb.scatter_(0, image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
|
168 |
cur_vs_hs.view(-1, cur_vs_hs.shape[-1]))
|
169 |
elif self.training:
|
170 |
cur_vllm_emb += cur_vs_hs[0].mean() * 0
|
|
|
|
|
171 |
|
172 |
+
return vllm_embedding, vision_hidden_states
|
173 |
+
|
174 |
def forward(self, data, **kwargs):
|
175 |
vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
|
176 |
position_ids = data["position_ids"]
|
|
|
184 |
**kwargs
|
185 |
)
|
186 |
|
187 |
+
def _decode_text(self, result_ids, tokenizer):
|
188 |
+
result_text = []
|
189 |
+
for result in result_ids:
|
190 |
+
result = result[result != 0]
|
191 |
+
if result[0] == tokenizer.bos_id:
|
192 |
+
result = result[1:]
|
193 |
+
if result[-1] == tokenizer.eos_id or result[-1] == tokenizer.eot_id:
|
194 |
+
result = result[:-1]
|
195 |
+
result_text.append(tokenizer.decode(result).strip())
|
196 |
+
return result_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
+
def _decode(self, inputs_embeds, tokenizer, decode_text=False, **kwargs):
|
199 |
terminators = [
|
200 |
tokenizer.eos_token_id,
|
201 |
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
|
|
206 |
eos_token_id=terminators,
|
207 |
**kwargs
|
208 |
)
|
209 |
+
if decode_text:
|
210 |
+
return self._decode_text(output, tokenizer)
|
211 |
+
return output
|
212 |
|
213 |
def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
|
214 |
terminators = [
|
|
|
229 |
|
230 |
return streamer
|
231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
def generate(
|
233 |
self,
|
234 |
+
model_inputs,
|
|
|
|
|
235 |
tokenizer=None,
|
|
|
236 |
vision_hidden_states=None,
|
|
|
237 |
stream=False,
|
238 |
**kwargs
|
239 |
):
|
240 |
+
bs = len(model_inputs["input_ids"])
|
241 |
+
img_list = model_inputs["pixel_values"]
|
242 |
+
tgt_sizes = model_inputs["tgt_sizes"]
|
243 |
+
if img_list is None:
|
244 |
img_list = [[] for i in range(bs)]
|
245 |
assert bs == len(img_list)
|
|
|
|
|
|
|
246 |
if vision_hidden_states is None:
|
247 |
pixel_values = []
|
248 |
for i in range(bs):
|
|
|
258 |
else:
|
259 |
model_inputs["vision_hidden_states"] = vision_hidden_states
|
260 |
|
261 |
+
(
|
262 |
+
input_embeds,
|
263 |
+
vision_hidden_states,
|
264 |
+
) = self.get_vllm_embedding(model_inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
+
# output_ids = self._decode(input_embeds, tokenizer, **kwargs)
|
267 |
+
if stream:
|
268 |
+
kwargs.pop("decode_text")
|
269 |
+
result = self._decode_stream(input_embeds, tokenizer, **kwargs)
|
270 |
+
else:
|
271 |
+
result = self._decode(input_embeds, tokenizer, **kwargs)
|
272 |
|
273 |
return result
|
274 |
|
|
|
277 |
image,
|
278 |
msgs,
|
279 |
tokenizer,
|
280 |
+
processor=None,
|
281 |
vision_hidden_states=None,
|
282 |
max_new_tokens=1024,
|
283 |
sampling=True,
|
|
|
286 |
stream=False,
|
287 |
**kwargs
|
288 |
):
|
289 |
+
if processor is None:
|
290 |
+
processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
|
291 |
if isinstance(msgs, str):
|
292 |
msgs = json.loads(msgs)
|
|
|
293 |
copy_msgs = deepcopy(msgs)
|
|
|
|
|
294 |
|
295 |
+
assert len(msgs) > 0, "msgs is empty"
|
296 |
+
assert sampling or not stream, "if use stream mode, make sure sampling=True"
|
297 |
+
|
298 |
+
if image is not None and isinstance(copy_msgs[0]["content"], str):
|
299 |
+
# copy_msgs[0]['content'] = '(<image>./</image>)\n' + copy_msgs[0]['content']
|
300 |
+
copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]]
|
301 |
|
302 |
images = []
|
|
|
303 |
for i, msg in enumerate(copy_msgs):
|
304 |
role = msg["role"]
|
305 |
content = msg["content"]
|
|
|
308 |
assert role == "user", "The role of first msg should be user"
|
309 |
if isinstance(content, str):
|
310 |
content = [content]
|
|
|
311 |
cur_msgs = []
|
312 |
for c in content:
|
313 |
if isinstance(c, Image.Image):
|
314 |
+
images.append(c)
|
315 |
+
cur_msgs.append("(<image>./</image>)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
elif isinstance(c, str):
|
317 |
cur_msgs.append(c)
|
318 |
+
msg["content"] = "\n".join(cur_msgs)
|
|
|
|
|
|
|
|
|
319 |
|
320 |
if system_prompt:
|
321 |
sys_msg = {'role': 'system', 'content': system_prompt}
|
322 |
+
copy_msgs = [sys_msg] + copy_msgs
|
323 |
|
324 |
+
prompt = processor.tokenizer.apply_chat_template(copy_msgs, tokenize=False, add_generation_prompt=True)
|
325 |
+
inputs = processor(prompt, images, return_tensors="pt", max_length=max_inp_length).to(self.device)
|
326 |
|
327 |
if sampling:
|
328 |
generation_config = {
|
|
|
341 |
generation_config.update(
|
342 |
(k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()
|
343 |
)
|
|
|
344 |
with torch.inference_mode():
|
345 |
+
res = self.generate(
|
346 |
+
inputs,
|
|
|
|
|
|
|
347 |
tokenizer=tokenizer,
|
348 |
max_new_tokens=max_new_tokens,
|
349 |
vision_hidden_states=vision_hidden_states,
|
|
|
350 |
stream=stream,
|
351 |
+
decode_text=True,
|
352 |
**generation_config
|
353 |
)
|
354 |
+
|
355 |
if stream:
|
356 |
def stream_gen():
|
357 |
for text in res:
|
|
|
362 |
else:
|
363 |
answer = res[0]
|
364 |
return answer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"image_processor_type": "MiniCPMVImageProcessor",
|
3 |
+
"auto_map": {
|
4 |
+
"AutoProcessor": "processing_minicpmv.MiniCPMVProcessor",
|
5 |
+
"AutoImageProcessor": "image_processing_minicpmv.MiniCPMVImageProcessor"
|
6 |
+
},
|
7 |
+
"processor_class": "MiniCPMVProcessor",
|
8 |
+
"max_slice_nums": 9,
|
9 |
+
"scale_resolution": 448,
|
10 |
+
"patch_size": 14,
|
11 |
+
"image_feature_size": 96,
|
12 |
+
"im_start": "<image>",
|
13 |
+
"im_end": "</image>",
|
14 |
+
"slice_start": "<slice>",
|
15 |
+
"slice_end": "</slice>",
|
16 |
+
"unk": "<unk>",
|
17 |
+
"norm_mean": [0.5, 0.5, 0.5],
|
18 |
+
"norm_std": [0.5, 0.5, 0.5],
|
19 |
+
"version": 2.5
|
20 |
+
}
|
processing_minicpmv.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Processor class for MiniCPMV.
|
17 |
+
"""
|
18 |
+
|
19 |
+
from typing import List, Optional, Union, Dict, Any
|
20 |
+
import torch
|
21 |
+
import re
|
22 |
+
|
23 |
+
from transformers.image_processing_utils import BatchFeature
|
24 |
+
from transformers.image_utils import ImageInput
|
25 |
+
from transformers.processing_utils import ProcessorMixin
|
26 |
+
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
27 |
+
from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device
|
28 |
+
|
29 |
+
from .image_processing_minicpmv import MiniCPMVBatchFeature
|
30 |
+
|
31 |
+
|
32 |
+
class MiniCPMVProcessor(ProcessorMixin):
|
33 |
+
r"""
|
34 |
+
Constructs a MiniCPMV processor which wraps a MiniCPMV image processor and a MiniCPMV tokenizer into a single processor.
|
35 |
+
|
36 |
+
[`MiniCPMVProcessor`] offers all the functionalities of [`MiniCPMVImageProcessor`] and [`LlamaTokenizerWrapper`]. See the
|
37 |
+
[`~MiniCPMVProcessor.__call__`] and [`~MiniCPMVProcessor.decode`] for more information.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
image_processor ([`MiniCPMVImageProcessor`], *optional*):
|
41 |
+
The image processor is a required input.
|
42 |
+
tokenizer ([`LlamaTokenizerWrapper`], *optional*):
|
43 |
+
The tokenizer is a required input.
|
44 |
+
"""
|
45 |
+
attributes = ["image_processor", "tokenizer"]
|
46 |
+
image_processor_class = "AutoImageProcessor"
|
47 |
+
tokenizer_class = "AutoTokenizer"
|
48 |
+
|
49 |
+
def __init__(self, image_processor=None, tokenizer=None):
|
50 |
+
super().__init__(image_processor, tokenizer)
|
51 |
+
self.version = image_processor.version
|
52 |
+
|
53 |
+
def __call__(
|
54 |
+
self,
|
55 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
56 |
+
images: ImageInput = None,
|
57 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
58 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
59 |
+
max_length: Optional[int] = None,
|
60 |
+
do_pad: Optional[bool] = True,
|
61 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
62 |
+
) -> MiniCPMVBatchFeature:
|
63 |
+
"""
|
64 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
65 |
+
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
|
66 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
67 |
+
LlavaNextImageProcessor's [`~LlavaNextImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
68 |
+
of the above two methods for more information.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
72 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
73 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
74 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
75 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
76 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
77 |
+
tensor. Both channels-first and channels-last formats are supported.
|
78 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
79 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
80 |
+
index) among:
|
81 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
82 |
+
sequence if provided).
|
83 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
84 |
+
acceptable input length for the model if that argument is not provided.
|
85 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
86 |
+
lengths).
|
87 |
+
max_length (`int`, *optional*):
|
88 |
+
Maximum length of the returned list and optionally padding length (see above).
|
89 |
+
do_pad (`bool`, *optional*, defaults to self.do_pad):
|
90 |
+
Whether to pad the image. If `True` will pad the images in the batch to the largest image in the batch
|
91 |
+
and create a pixel mask. Padding will be applied to the bottom and right of the image with zeros.
|
92 |
+
truncation (`bool`, *optional*):
|
93 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
94 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
95 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
96 |
+
|
97 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
98 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
99 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
100 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
104 |
+
|
105 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
106 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
107 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
108 |
+
`None`).
|
109 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
110 |
+
"""
|
111 |
+
if images is not None:
|
112 |
+
image_inputs = self.image_processor(images, do_pad=do_pad, return_tensors=return_tensors)
|
113 |
+
return self._convert_images_texts_to_inputs(image_inputs, text, max_length=max_length)
|
114 |
+
|
115 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
|
116 |
+
def batch_decode(self, *args, **kwargs):
|
117 |
+
"""
|
118 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
119 |
+
refer to the docstring of this method for more information.
|
120 |
+
"""
|
121 |
+
output_ids = args[0]
|
122 |
+
result_text = []
|
123 |
+
for result in output_ids:
|
124 |
+
result = result[result != 0]
|
125 |
+
if result[0] == self.tokenizer.bos_id:
|
126 |
+
result = result[1:]
|
127 |
+
if result[-1] == self.tokenizer.eos_id:
|
128 |
+
result = result[:-1]
|
129 |
+
result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip())
|
130 |
+
return result_text
|
131 |
+
# return self.tokenizer.batch_decode(*args, **kwargs)
|
132 |
+
|
133 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
|
134 |
+
def decode(self, *args, **kwargs):
|
135 |
+
"""
|
136 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
137 |
+
the docstring of this method for more information.
|
138 |
+
"""
|
139 |
+
result = args[0]
|
140 |
+
result = result[result != 0]
|
141 |
+
if result[0] == self.tokenizer.bos_id:
|
142 |
+
result = result[1:]
|
143 |
+
if result[-1] == self.tokenizer.eos_id or (hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id):
|
144 |
+
result = result[:-1]
|
145 |
+
return self.tokenizer.decode(result, *args[1:], **kwargs).strip()
|
146 |
+
|
147 |
+
def _convert(
|
148 |
+
self, input_str, max_inp_length: Optional[int] = None
|
149 |
+
):
|
150 |
+
if self.version == 2.5 or self.tokenizer.add_bos_token:
|
151 |
+
input_ids = self.tokenizer.encode(input_str)
|
152 |
+
else:
|
153 |
+
input_ids = [self.tokenizer.bos_id] + self.tokenizer.encode(input_str)
|
154 |
+
if max_inp_length is not None:
|
155 |
+
input_ids = input_ids[:max_inp_length]
|
156 |
+
input_ids = torch.tensor(input_ids, dtype=torch.int32)
|
157 |
+
|
158 |
+
image_start_tokens = torch.where(input_ids == self.tokenizer.im_start_id)[0]
|
159 |
+
image_start_tokens += 1
|
160 |
+
image_end_tokens = torch.where(input_ids == self.tokenizer.im_end_id)[0]
|
161 |
+
valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
|
162 |
+
image_bounds = torch.hstack(
|
163 |
+
[
|
164 |
+
image_start_tokens[:valid_image_nums].unsqueeze(-1),
|
165 |
+
image_end_tokens[:valid_image_nums].unsqueeze(-1),
|
166 |
+
]
|
167 |
+
)
|
168 |
+
return input_ids.unsqueeze(0), image_bounds
|
169 |
+
|
170 |
+
def _convert_images_texts_to_inputs(self, images, texts, do_pad=False, truncation=None, max_length=None, return_tensors=None):
|
171 |
+
if not len(images):
|
172 |
+
model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=do_pad, truncation=truncation, max_length=max_length)
|
173 |
+
return MiniCPMVBatchFeature(data={**model_inputs})
|
174 |
+
|
175 |
+
pattern = "(<image>./</image>)"
|
176 |
+
images, image_sizes, tgt_sizes = images["pixel_values"], images["image_sizes"], images["tgt_sizes"]
|
177 |
+
|
178 |
+
image_tags = re.findall(pattern, texts)
|
179 |
+
assert len(image_tags) == len(image_sizes)
|
180 |
+
text_chunks = texts.split(pattern)
|
181 |
+
final_texts = ""
|
182 |
+
for i in range(len(image_tags)):
|
183 |
+
final_texts = final_texts + text_chunks[i] + self.image_processor.get_slice_image_placeholder(image_sizes[i])
|
184 |
+
final_texts += text_chunks[-1]
|
185 |
+
input_ids, image_bounds = self._convert(final_texts, max_length)
|
186 |
+
return MiniCPMVBatchFeature(data={
|
187 |
+
"input_ids": input_ids,
|
188 |
+
"pixel_values": [images],
|
189 |
+
"image_sizes": [image_sizes],
|
190 |
+
"image_bound": [image_bounds],
|
191 |
+
"tgt_sizes": [tgt_sizes]
|
192 |
+
})
|
193 |
+
|
194 |
+
@property
|
195 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
|
196 |
+
def model_input_names(self):
|
197 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
198 |
+
image_processor_input_names = self.image_processor.model_input_names
|
199 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
200 |
+
|
201 |
+
|
202 |
+
def pad(self, orig_items, key, max_length=None, padding_value=0, padding_side="left"):
|
203 |
+
items = []
|
204 |
+
if isinstance(orig_items[0][key], list):
|
205 |
+
assert isinstance(orig_items[0][key][0], torch.Tensor)
|
206 |
+
for it in orig_items:
|
207 |
+
for tr in it[key]:
|
208 |
+
items.append({key: tr})
|
209 |
+
else:
|
210 |
+
assert isinstance(orig_items[0][key], torch.Tensor)
|
211 |
+
items = orig_items
|
212 |
+
|
213 |
+
batch_size = len(items)
|
214 |
+
shape = items[0][key].shape
|
215 |
+
dim = len(shape)
|
216 |
+
assert dim <= 3
|
217 |
+
if max_length is None:
|
218 |
+
max_length = 0
|
219 |
+
max_length = max(max_length, max(item[key].shape[-1] for item in items))
|
220 |
+
min_length = min(item[key].shape[-1] for item in items)
|
221 |
+
dtype = items[0][key].dtype
|
222 |
+
|
223 |
+
if dim == 1:
|
224 |
+
return torch.cat([item[key] for item in items], dim=0)
|
225 |
+
elif dim == 2:
|
226 |
+
if max_length == min_length:
|
227 |
+
return torch.cat([item[key] for item in items], dim=0)
|
228 |
+
tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
|
229 |
+
else:
|
230 |
+
tensor = (
|
231 |
+
torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype)
|
232 |
+
+ padding_value
|
233 |
+
)
|
234 |
+
|
235 |
+
for i, item in enumerate(items):
|
236 |
+
if dim == 2:
|
237 |
+
if padding_side == "left":
|
238 |
+
tensor[i, -len(item[key][0]) :] = item[key][0].clone()
|
239 |
+
else:
|
240 |
+
tensor[i, : len(item[key][0])] = item[key][0].clone()
|
241 |
+
elif dim == 3:
|
242 |
+
if padding_side == "left":
|
243 |
+
tensor[i, -len(item[key][0]) :, :] = item[key][0].clone()
|
244 |
+
else:
|
245 |
+
tensor[i, : len(item[key][0]), :] = item[key][0].clone()
|
246 |
+
|
247 |
+
return tensor
|
tokenization_minicpmv_fast.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
4 |
+
|
5 |
+
|
6 |
+
class MiniCPMVTokenizerFast(PreTrainedTokenizerFast):
|
7 |
+
def __init__(self, **kwargs):
|
8 |
+
super().__init__(**kwargs)
|
9 |
+
self.eot_token = "<|eot_id|>"
|
10 |
+
self.im_start = "<image>"
|
11 |
+
self.im_end = "</image>"
|
12 |
+
self.ref_start = "<ref>"
|
13 |
+
self.ref_end = "</ref>"
|
14 |
+
self.box_start = "<box>"
|
15 |
+
self.box_end = "</box>"
|
16 |
+
self.quad_start = "<quad>"
|
17 |
+
self.quad_end = "</quad>"
|
18 |
+
self.slice_start = "<slice>"
|
19 |
+
self.slice_end = "</slice>"
|
20 |
+
|
21 |
+
@property
|
22 |
+
def eos_id(self):
|
23 |
+
return self.eos_token_id
|
24 |
+
|
25 |
+
@property
|
26 |
+
def bos_id(self):
|
27 |
+
return self.bos_token_id
|
28 |
+
|
29 |
+
@property
|
30 |
+
def unk_id(self):
|
31 |
+
return self.unk_token_id
|
32 |
+
|
33 |
+
@property
|
34 |
+
def eot_id(self):
|
35 |
+
return self.convert_tokens_to_ids(self.eot_token)
|
36 |
+
|
37 |
+
@property
|
38 |
+
def im_start_id(self):
|
39 |
+
return self.convert_tokens_to_ids(self.im_start)
|
40 |
+
|
41 |
+
@property
|
42 |
+
def im_end_id(self):
|
43 |
+
return self.convert_tokens_to_ids(self.im_end)
|
44 |
+
|
45 |
+
@staticmethod
|
46 |
+
def escape(text: str) -> str:
|
47 |
+
return text
|
48 |
+
|
49 |
+
@staticmethod
|
50 |
+
def unescape(text: str) -> str:
|
51 |
+
return text
|
tokenizer_config.json
CHANGED
@@ -2051,7 +2051,7 @@
|
|
2051 |
},
|
2052 |
"auto_map": {
|
2053 |
"AutoTokenizer": [
|
2054 |
-
"
|
2055 |
null
|
2056 |
]
|
2057 |
},
|
@@ -2066,7 +2066,7 @@
|
|
2066 |
"model_max_length": 1000000000000000019884624838656,
|
2067 |
"pad_token": "!",
|
2068 |
"padding_side": "right",
|
2069 |
-
"tokenizer_class": "
|
2070 |
"truncation_side": "right",
|
2071 |
"unk_token": "<unk>"
|
2072 |
}
|
|
|
2051 |
},
|
2052 |
"auto_map": {
|
2053 |
"AutoTokenizer": [
|
2054 |
+
"tokenization_minicpmv_fast.MiniCPMVTokenizerFast",
|
2055 |
null
|
2056 |
]
|
2057 |
},
|
|
|
2066 |
"model_max_length": 1000000000000000019884624838656,
|
2067 |
"pad_token": "!",
|
2068 |
"padding_side": "right",
|
2069 |
+
"tokenizer_class": "MiniCPMVTokenizerFast",
|
2070 |
"truncation_side": "right",
|
2071 |
"unk_token": "<unk>"
|
2072 |
}
|