MiniCPM-Reranker / README.md
Kaguya-19's picture
Update README.md
433ed6e verified
|
raw
history blame
10.6 kB
metadata
language:
  - zh
  - en
base_model: openbmb/MiniCPM-2B-sft-bf16
pipeline_tag: text-classification
library_name: transformers

MiniCPM-Reranker

MiniCPM-Reranker 是面壁智能与清华大学自然语言处理实验室(THUNLP)、东北大学信息检索小组(NEUIR)共同开发的中英双语言文本重排序模型,有如下特点:

  • 出色的中文、英文重排序能力。
  • 出色的中英跨语言重排序能力。

MiniCPM-Reranker 基于 MiniCPM-2B-sft-bf16 训练,结构上采取双向注意力。采取多阶段训练方式,共使用包括开源数据、机造数据、闭源数据在内的约 600 万条训练数据。

欢迎关注 RAG 套件系列:

MiniCPM-Reranker is a bilingual & cross-lingual text re-ranking model developed by ModelBest Inc. , THUNLP and NEUIR , featuring:

  • Exceptional Chinese and English re-ranking capabilities.
  • Outstanding cross-lingual re-ranking capabilities between Chinese and English.

MiniCPM-Reranker is trained based on MiniCPM-2B-sft-bf16 and incorporates bidirectional attention in its architecture. The model underwent multi-stage training using approximately 6 million training examples, including open-source, synthetic, and proprietary data.

We also invite you to explore the RAG toolkit series:

模型信息 Model Information

  • 模型大小:2.4B

  • 最大输入token数:1024

  • Model Size: 2.4B

  • Max Input Tokens: 1024

使用方法 Usage

输入格式 Input Format

本模型支持指令,输入格式如下:

MiniCPM-Reranker supports instructions in the following format:

<s>Instruction: {{ instruction }} Query: {{ query }}</s>{{ document }}

例如:

For example:

<s>Instruction: 为这个医学问题检索相关回答。Query: 咽喉癌的成因是什么?</s>(文档省略)
<s>Instruction: Given a claim about climate change, retrieve documents that support or refute the claim. Query: However the warming trend is slower than most climate models have forecast.</s>(document omitted)

也可以不提供指令,即采取如下格式:

MiniCPM-Reranker also works in instruction-free mode in the following format:

<s>Query: {{ query }}</s>{{ document }}

我们在BEIR与C-MTEB/Retrieval上测试时使用的指令见 instructions.json,其他测试不使用指令。

When running evaluation on BEIR and C-MTEB/Retrieval, we use instructions in instructions.json. For other evaluations, we do not use instructions.

环境要求 Requirements

transformers==4.37.2
flash-attn>2.3.5

示例脚本 Demo

Huggingface Transformers

from transformers import AutoModel, LlamaTokenizer, AutoModelForSequenceClassification
import torch
import numpy as np

# from https://github.com/huggingface/transformers/blob/v4.44.2/src/transformers/models/xlm_roberta/tokenization_xlm_roberta.py
class MiniCPMRerankerLLamaTokenizer(LlamaTokenizer):
    def build_inputs_with_special_tokens(
            self, token_ids_0, token_ids_1 = None
        ):
            """
            - single sequence: `<s> X </s>`
            - pair of sequences: `<s> A </s> B`

            Args:
                token_ids_0 (`List[int]`):
                    List of IDs to which the special tokens will be added.
                token_ids_1 (`List[int]`, *optional*):
                    Optional second list of IDs for sequence pairs.

            Returns:
                `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
            """

            if token_ids_1 is None:
                return super().build_inputs_with_special_tokens(token_ids_0)
            bos = [self.bos_token_id]
            sep = [self.eos_token_id]
            return bos + token_ids_0 + sep + token_ids_1

model_name = "openbmb/MiniCPM-Reranker"
tokenizer = MiniCPMRerankerLLamaTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.padding_side = "right"

model = AutoModelForSequenceClassification.from_pretrained(model_name, trust_remote_code=True,attn_implementation="flash_attention_2", torch_dtype=torch.float16).to("cuda")
model.eval()

@torch.no_grad()
def rerank(input_query, input_docs):
    tokenized_inputs = tokenizer([[input_query, input_doc] for input_doc in input_docs], return_tensors="pt", padding=True, truncation=True, max_length=1024) 

    for k in tokenized_inputs:
      tokenized_inputs [k] = tokenized_inputs[k].to("cuda")

    outputs = model(**tokenized_inputs)
    score = outputs.logits
    return score.float().detach().cpu().numpy()

queries = ["中国的首都是哪里?"]
passages = [["beijing", "shanghai"]]

INSTRUCTION = "Query: "
queries = [INSTRUCTION + query for query in queries]

scores = []
for i in range(len(queries)):
    print(queries[i])
    scores.append(rerank(queries[i],passages[i]))

print(np.array(scores))  # [[[-4.7460938][-8.8515625]]]

Sentence Transformer

from sentence_transformers import CrossEncoder
from transformers import LlamaTokenizer
import torch

# from https://github.com/huggingface/transformers/blob/v4.44.2/src/transformers/models/xlm_roberta/tokenization_xlm_roberta.py
class MiniCPMRerankerLLamaTokenizer(LlamaTokenizer):
    def build_inputs_with_special_tokens(
            self, token_ids_0, token_ids_1 = None
        ):
            """
            - single sequence: `<s> X </s>`
            - pair of sequences: `<s> A </s> B`

            Args:
                token_ids_0 (`List[int]`):
                    List of IDs to which the special tokens will be added.
                token_ids_1 (`List[int]`, *optional*):
                    Optional second list of IDs for sequence pairs.

            Returns:
                `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
            """

            if token_ids_1 is None:
                return super().build_inputs_with_special_tokens(token_ids_0)
            bos = [self.bos_token_id]
            sep = [self.eos_token_id]
            return bos + token_ids_0 + sep + token_ids_1

model_name = "openbmb/MiniCPM-Reranker"
model = CrossEncoder(model_name,max_length=1024,trust_remote_code=True, automodel_args={"attn_implementation":"flash_attention_2","torch_dtype": torch.float16})
model.tokenizer = MiniCPMRerankerLLamaTokenizer.from_pretrained(model_name, trust_remote_code=True)
model.tokenizer.padding_side = "right"

query = "中国的首都是哪里?"
passages = [["beijing", "shanghai"]]

INSTRUCTION = "Query: "
query = INSTRUCTION + query

sentence_pairs = [[query, doc] for doc in passages]

scores = model.predict(sentence_pairs, convert_to_tensor=True).tolist()
rankings = model.rank(query, passages, return_documents=True, convert_to_tensor=True)

print(scores) # [0.0087432861328125, 0.00020503997802734375]
for ranking in rankings:
    print(f"Score: {ranking['score']:.4f}, Corpus: {ranking['text']}")
  
# ID: 0, Score: 0.0087, Text: beijing
# ID: 1, Score: 0.0002, Text: shanghai

实验结果 Evaluation Results

中文与英文重排序结果 CN/EN Re-ranking Results

中文对bge-large-zh-v1.5检索的top-100进行重排,英文对bge-large-en-v1.5检索的top-100进行重排。

We re-rank top-100 docments from bge-large-zh-v1.5 in C-MTEB/Retrieval and from bge-large-en-v1.5 in BEIR.

模型 Model C-MTEB/Retrieval (NDCG@10) BEIR (NDCG@10)
bge-large-zh-v1.5(Retriever for Chinese) 70.46 -
bge-large-en-v1.5(Retriever for English) - 54.29
bge-reranker-v2-m3 71.82 55.36
bge-reranker-v2-minicpm-28 73.51 59.86
bge-reranker-v2-gemma 71.74 60.71
bge-reranker-v2.5-gemma2 - 63.67
MiniCPM-Reranker 76.79 61.32

中英跨语言重排序结果 CN-EN Cross-lingual Re-ranking Results

对bge-m3(Dense)检索的top100进行重排。

We re-rank top-100 documents from bge-m3 (Dense).

模型 Model MKQA En-Zh_CN (Recall@20) NeuCLIR22 (NDCG@10) NeuCLIR23 (NDCG@10)
bge-m3 (Dense)(Retriever) 66.4 30.49 41.09
jina-reranker-v2-base-multilingual 69.33 36.66 50.03
bge-reranker-v2-m3 69.75 40.98 49.67
gte-multilingual-reranker-base 68.51 38.74 45.3
MiniCPM-Reranker 71.73 43.65 50.59

许可证 License

  • 本仓库中代码依照 Apache-2.0 协议开源。
  • MiniCPM-Reranker 模型权重的使用则需要遵循 MiniCPM 模型协议
  • MiniCPM-Reranker 模型权重对学术研究完全开放。如需将模型用于商业用途,请填写此问卷
  • The code in this repo is released under the Apache-2.0 License.
  • The usage of MiniCPM-Reranker model weights must strictly follow MiniCPM Model License.md.
  • The models and weights of MiniCPM-Reranker are completely free for academic research. After filling out a "questionnaire" for registration, MiniCPM-Reranker weights are also available for free commercial use.