upernet-swin-tiny / README.md
nielsr's picture
nielsr HF staff
Upload README.md with huggingface_hub
dc8e8c9
|
raw
history blame
1.63 kB
metadata
language: en
license: mit
tags:
  - vision
  - image-segmentation
model_name: openmmlab/upernet-swin-tiny

UperNet, Swin Transformer tiny-sized backbone

UperNet framework for semantic segmentation, leveraging a Swin Transformer backbone. UperNet was introduced in the paper Unified Perceptual Parsing for Scene Understanding by Xiao et al.

Combining UperNet with a Swin Transformer backbone was introduced in the paper Swin Transformer: Hierarchical Vision Transformer using Shifted Windows.

Disclaimer: The team releasing UperNet + Swin Transformer did not write a model card for this model so this model card has been written by the Hugging Face team.

Model description

UperNet is a framework for semantic segmentation. It consists of several components, including a backbone, a Feature Pyramid Network (FPN) and a Pyramid Pooling Module (PPM).

Any visual backbone can be plugged into the UperNet framework. The framework predicts a semantic label per pixel.

UperNet architecture

Intended uses & limitations

You can use the raw model for semantic segmentation. See the model hub to look for fine-tuned versions (with various backbones) on a task that interests you.

How to use

For code examples, we refer to the documentation.