File size: 21,499 Bytes
1009cff
 
 
 
 
 
 
 
 
 
 
5b97548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009cff
 
102f450
1009cff
 
 
102f450
1009cff
8bc6e61
365d7cf
dcd8202
 
 
d5e9d4b
 
 
1009cff
 
 
 
 
9cbb7d0
1009cff
 
 
102f450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009cff
 
 
 
 
 
 
 
 
 
 
 
 
 
3c8c84d
55060a9
1009cff
 
 
 
 
 
 
17e4b31
20c26dd
1009cff
3c8c84d
 
1009cff
 
102f450
 
1009cff
 
 
 
 
 
 
 
 
 
 
49fd75c
1009cff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e694dc
 
 
ac2f075
7e694dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac2f075
7e694dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac2f075
7e694dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009cff
 
 
 
6538cf8
1009cff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6538cf8
1009cff
49fd75c
3fc884d
 
 
6538cf8
3fc884d
 
1009cff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cbb7d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009cff
 
 
 
 
 
 
737ca2f
1009cff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
737ca2f
6f23bab
 
 
37dbbcc
737ca2f
 
 
 
 
 
 
 
 
 
6f23bab
 
 
 
1009cff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
---
license: other
license_name: qwen
language:
- th
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- openthaigpt
- qwen
model-index:
  - name: OpenThaiGPT1.5-7b
    results:
      - task:
          type: text-generation
        dataset:
          name: ThaiExam
          type: multiple_choices
        metrics:
          - name: Thai Exam(Acc)
            type: accuracy
            value: 52.04
        source:
          name: 🇹🇭 Thai LLM Leaderboard
          url: https://huggingface.co/spaces/ThaiLLM-Leaderboard/leaderboard
      - task:
          type: text-generation
        dataset:
          name: M3Exam
          type: multiple_choices
        metrics:
          - name: M3Exam(Acc)
            type: Accuracy
            value: 54.01
        source:
          name: 🇹🇭 Thai LLM Leaderboard
          url: https://huggingface.co/spaces/ThaiLLM-Leaderboard/leaderboard
---

# 🇹🇭 OpenThaiGPT 7b 1.5 Instruct
![OpenThaiGPT](https://1173516064-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FvvbWvIIe82Iv1yHaDBC5%2Fuploads%2Fb8eiMDaqiEQL6ahbAY0h%2Fimage.png?alt=media&token=6fce78fd-2cca-4c0a-9648-bd5518e644ce)  
[More Info](https://openthaigpt.aieat.or.th/)

🇹🇭 **OpenThaiGPT 7b Version 1.5** is an advanced 7-billion-parameter Thai language chat model based on Qwen v2.5 released on September 30, 2024. It has been specifically fine-tuned on over 2,000,000 Thai instruction pairs and is capable of answering Thai-specific domain questions.

<a href="https://cdn-uploads.huggingface.co/production/uploads/5fcd9c426d942eaf4d1ebd30/NoVK86trV6I8LSEduOQ_K.png" target="_blank"><img src="https://cdn-uploads.huggingface.co/production/uploads/5fcd9c426d942eaf4d1ebd30/NoVK86trV6I8LSEduOQ_K.png" style="width:800px"></a>

## Online Demo:
https://demo72b.aieat.or.th/

## Example code for API Calling
https://github.com/OpenThaiGPT/openthaigpt1.5_api_examples

## Highlights
- **State-of-the-art Thai language LLM**, achieving the highest average scores across various Thai language exams compared to other open-source Thai LLMs.
- **Multi-turn conversation support** for extended dialogues.
- **Retrieval Augmented Generation (RAG) compatibility** for enhanced response generation.
- **Impressive context handling**: Processes up to 131,072 tokens of input and generates up to 8,192 tokens, enabling detailed and complex interactions.
- **Tool calling support**: Enables users to efficiently call various functions through intelligent responses.

## Benchmark on [OpenThaiGPT Eval](https://huggingface.co/datasets/openthaigpt/openthaigpt_eval)
** Please take a look at ``openthaigpt/openthaigpt1.5-7b-instruct`` for this model's evaluation result.
| **Exam names**                 | **scb10x/llama-3-typhoon-v1.5x-8b-instruct** | **meta-llama/Llama-3.1-7B-Instruct** | **Qwen/Qwen2.5-7B-Instruct_stat** | **openthaigpt/openthaigpt1.5-7b** |
|:------------------------------:|:--------------------------------------------:|:------------------------------------:|:---------------------------------:|:---------------------------------:|
| **01_a_level**                 | 46.67%                                       | 47.50%                               | 58.33%                            | 60.00%                            |
| **02_tgat**                    | 32.00%                                       | 36.00%                               | 32.00%                            | 36.00%                            |
| **03_tpat1**                   | 52.50%                                       | 55.00%                               | 57.50%                            | 57.50%                            |
| **04_investment_consult**      | 56.00%                                       | 48.00%                               | 68.00%                            | 76.00%                            |
| **05_facebook_beleble_th_200** | 78.00%                                       | 73.00%                               | 79.00%                            | 81.00%                            |
| **06_xcopa_th_200**            | 79.50%                                       | 69.00%                               | 80.50%                            | 81.00%                            |
| **07_xnli2.0_th_200**          | 56.50%                                       | 55.00%                               | 53.00%                            | 54.50%                            |
| **08_onet_m3_thai**            | 48.00%                                       | 32.00%                               | 72.00%                            | 64.00%                            |
| **09_onet_m3_social**          | 75.00%                                       | 50.00%                               | 90.00%                            | 80.00%                            |
| **10_onet_m3_math**            | 25.00%                                       | 18.75%                               | 31.25%                            | 31.25%                            |
| **11_onet_m3_science**         | 46.15%                                       | 42.31%                               | 46.15%                            | 46.15%                            |
| **12_onet_m3_english**         | 70.00%                                       | 76.67%                               | 86.67%                            | 83.33%                            |
| **13_onet_m6_thai**            | 47.69%                                       | 29.23%                               | 46.15%                            | 53.85%                            |
| **14_onet_m6_math**            | 29.41%                                       | 17.65%                               | 29.41%                            | 29.41%                            |
| **15_onet_m6_social**          | 50.91%                                       | 43.64%                               | 56.36%                            | 58.18%                            |
| **16_onet_m6_science**         | 42.86%                                       | 32.14%                               | 57.14%                            | 57.14%                            |
| **17_onet_m6_english**         | 65.38%                                       | 71.15%                               | 78.85%                            | 80.77%                            |
| **Micro Average**              | 60.65%                                       | 55.60%                               | 64.41%                            | <b style="color:blue">65.78%</b>                            |


Thai language multiple choice exams, Test on unseen test set, Zero-shot learning. Benchmark source code and exams information: https://github.com/OpenThaiGPT/openthaigpt_eval

(Updated on: 30 September 2024)

## Benchmark on [scb10x/thai_exam](https://huggingface.co/datasets/scb10x/thai_exam)

| Models                                                    | **Thai Exam (Acc)** |
|:----------------------------------------------------------:|:-------------------:|
| **api/claude-3-5-sonnet-20240620**                         | 69.2                |
| <b style="color:blue">**openthaigpt/openthaigpt1.5-72b-instruct***</b>                        | <b style="color:blue">64.07</b>               |
| **api/gpt-4o-2024-05-13**                                  | 63.89               |
| **hugging-quants/Meta-Llama-3.1-405B-Instruct-AWQ-INT4**   | 63.54               |
| <b style="color:blue">**openthaigpt/openthaigpt1.5-14b-instruct***</b>                         | <b style="color:blue">59.65</b>               |
| **scb10x/llama-3-typhoon-v1.5x-70b-instruct**              | 58.76               |
| **Qwen/Qwen2-72B-Instruct**                                | 58.23               |
| **meta-llama/Meta-Llama-3.1-70B-Instruct**                 | 58.23               |
| **Qwen/Qwen2.5-14B-Instruct**                              | 57.35               |
| **api/gpt-4o-mini-2024-07-18**                             | 54.51               |
| <b style="color:blue">**openthaigpt/openthaigpt1.5-7b-instruct***</b>                         | <b style="color:blue">52.04</b>               |
| **SeaLLMs/SeaLLMs-v3-7B-Chat**                             | 51.33               |
| **openthaigpt/openthaigpt-1.0.0-70b-chat**                 | 50.09               |

<b style="color:blue">*</b>  Evaluated by OpenThaiGPT team using [scb10x/thai_exam](https://huggingface.co/datasets/scb10x/thai_exam).

(Updated on: 13 October 2024)

## Licenses
* Built with Qwen
* Qwen License: Allow **Research** and 
**Commercial uses** but if your user base exceeds 100 million monthly active users, you need to negotiate a separate commercial license. Please see LICENSE file for more information.<br>

## Sponsors
<img src="https://cdn-uploads.huggingface.co/production/uploads/5fcd9c426d942eaf4d1ebd30/3kjN6kuTzXDXQ6o1RFvHX.png" width="600px">

## Supports
- Official website: https://openthaigpt.aieat.or.th
- Facebook page: https://web.facebook.com/groups/openthaigpt
- A Discord server for discussion and support [here](https://discord.gg/rUTp6dfVUF)
- E-mail: kobkrit@aieat.or.th

## Prompt Format
Prompt format is based on ChatML.
```
<|im_start|>system\n{sytem_prompt}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n
```

### System prompt:
```
คุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์
```

### Examples

#### Single Turn Conversation Example
```
<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\n
```

#### Single Turn Conversation with Context (RAG) Example
```
<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nกรุงเทพมหานคร เป็นเมืองหลวง นครและมหานครที่มีประชากรมากที่สุดของประเทศไทย กรุงเทพมหานครมีพื้นที่ทั้งหมด 1,568.737 ตร.กม. มีประชากรตามทะเบียนราษฎรกว่า 8 ล้านคน\nกรุงเทพมหานครมีพื้นที่เท่าไร่<|im_end|>\n<|im_start|>assistant\n
```

#### Multi Turn Conversation Example

##### First turn
```
<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\n
```

##### Second turn
```
<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\nสวัสดีครับ ยินดีต้อนรับครับ คุณต้องการให้ฉันช่วยอะไรครับ?<|im_end|>\n<|im_start|>user\nกรุงเทพมหานคร ชื่อเต็มยาวๆคืออะไร<|im_end|>\n<|im_start|>assistant\n
```

##### Result
```
<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\nสวัสดีครับ ยินดีต้อนรับครับ คุณต้องการให้ฉันช่วยอะไรครับ?<|im_end|>\n<|im_start|>user\nกรุงเทพมหานคร ชื่อเต็มยาวๆคืออะไร<|im_end|>\n<|im_start|>assistant\nชื่อเต็มของกรุงเทพมหานครคือ \"กรุงเทพมหานคร อมรรัตนโกสินทร์ มหินทรายุธยา มหาดิลกภพ นพรัตนราชธานีบูรีรมย์ อุดมราชนิเวศน์มหาสถาน อมรพิมานอวตารสถิต สักกะทัตติยวิษณุกรรมประสิทธิ์\"
```

## How to use

### Free API Service (hosted by Siam.Ai and Float16.cloud)

#### Siam.AI
```bash
curl https://api.aieat.or.th/v1/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer dummy" \
  -d '{
    "model": ".",
    "prompt": "<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nกรุงเทพมหานครคืออะไร<|im_end|>\n<|im_start|>assistant\n",
    "max_tokens": 512,
    "temperature": 0.7,
    "top_p": 0.8,
    "top_k": 40,
    "stop": ["<|im_end|>"]
  }'
```

#### Float16
```bash
curl -X POST https://api.float16.cloud/dedicate/78y8fJLuzE/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer float16-AG0F8yNce5s1DiXm1ujcNrTaZquEdaikLwhZBRhyZQNeS7Dv0X" \
  -d '{
    "model": "openthaigpt/openthaigpt1.5-7b-instruct",
    "messages": [
      {
        "role": "system",
        "content": "คุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์"
      },
      {
        "role": "user",
        "content": "สวัสดี"
      }
    ]
   }'
```

### OpenAI Client Library (Hosted by VLLM, please see below.)
```python
import openai

# Configure OpenAI client to use vLLM server
openai.api_base = "http://127.0.0.1:8000/v1"
openai.api_key = "dummy"  # vLLM doesn't require a real API key

prompt = "<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nกรุงเทพมหานครคืออะไร<|im_end|>\n<|im_start|>assistant\n"

try:
    response = openai.Completion.create(
        model=".",  # Specify the model you're using with vLLM
        prompt=prompt,
        max_tokens=512,
        temperature=0.7,
        top_p=0.8,
        top_k=40,
        stop=["<|im_end|>"]
    )
    print("Generated Text:", response.choices[0].text)
except Exception as e:
    print("Error:", str(e))
```


### Huggingface
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "openthaigpt/openthaigpt1.5-7b-instruct"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "ประเทศไทยคืออะไร"
messages = [
    {"role": "system", "content": "คุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์"},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```

### vLLM

1. Install VLLM (https://github.com/vllm-project/vllm)
   
2. Run server
```bash
vllm serve openthaigpt/openthaigpt1.5-7b-instruct --tensor-parallel-size 4 
```
* Note, change ``--tensor-parallel-size 4`` to the amount of available GPU cards.

If you wish to enable tool calling feature, add ``--enable-auto-tool-choice --tool-call-parser hermes`` into command. e.g.,
```bash
vllm serve openthaigpt/openthaigpt1.5-7b-instruct --tensor-parallel-size 4 --enable-auto-tool-choice --tool-call-parser hermes
```

3. Run inference (CURL example)
```bash
curl -X POST 'http://127.0.0.1:8000/v1/completions' \
-H 'Content-Type: application/json' \
-d '{
  "model": ".",
  "prompt": "<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\n",
  "max_tokens": 512,
  "temperature": 0.7,
  "top_p": 0.8,
  "top_k": 40,
  "stop": ["<|im_end|>"]
}'
```

### Processing Long Texts
The current `config.json` is set for context length up to 32,768 tokens.
To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.

For supported frameworks, you could add the following to `config.json` to enable YaRN:
```json
{
  ...
  "rope_scaling": {
    "factor": 4.0,
    "original_max_position_embeddings": 32768,
    "type": "yarn"
  }
}
```


### Tool Calling
The Tool Calling feature in OpenThaiGPT 1.5 enables users to efficiently call various functions through intelligent responses. This includes making external API calls to retrieve real-time data, such as current temperature information, or predicting future data simply by submitting a query.
For example, a user can ask OpenThaiGPT, “What is the current temperature in San Francisco?” and the AI will execute a pre-defined function to provide an immediate response without the need for additional coding.
This feature also allows for broader applications with external data sources, including the ability to call APIs for services such as weather updates, stock market information, or data from within the user’s own system.

#### Example:
```python
import openai

def get_temperature(location, date=None, unit="celsius"):
    """Get temperature for a location (current or specific date)."""
    if date:
        return {"temperature": 25.9, "location": location, "date": date, "unit": unit}
    return {"temperature": 26.1, "location": location, "unit": unit}

tools = [
    {
        "name": "get_temperature",
        "description": "Get temperature for a location (current or by date).",
        "parameters": {
            "location": "string", "date": "string (optional)", "unit": "enum [celsius, fahrenheit]"
        },
    }
]

messages = [{"role": "user", "content": "อุณหภูมิที่ San Francisco วันนี้ีและพรุ้่งนี้คือเท่าไร่?"}]

# Simulated response flow using OpenThaiGPT Tool Calling
response = openai.ChatCompletion.create(
    model=".", messages=messages, tools=tools, temperature=0.7, max_tokens=512
)

print(response)
```
**Full example**: https://github.com/OpenThaiGPT/openthaigpt1.5_api_examples/blob/main/api_tool_calling_powered_by_siamai.py

### GPU Memory Requirements
| **Number of Parameters** | **FP 16 bits** | **8 bits (Quantized)** | **4 bits (Quantized)** | **Example Graphic Card for 4 bits** |
|------------------|----------------|------------------------|------------------------|---------------------------------------------|
| **7b**           | 24 GB          | 12 GB                  | 6 GB                   | Nvidia RTX 4060 8GB                         |
| **13b**          | 48 GB          | 24 GB                  | 12 GB                  | Nvidia RTX 4070 16GB                        |
| **72b**          | 192 GB         | 96 GB                  | 48 GB                  | Nvidia RTX 4090 24GB x 2 cards              |

### OpenThaiGPT Team
* Sumeth Yuenyong (sumeth.yue@mahidol.edu)
* Kobkrit Viriyayudhakorn (kobkrit@aieat.or.th)
* Apivadee Piyatumrong (apivadee.piy@nectec.or.th)
* Jillaphat Jaroenkantasima (autsadang41@gmail.com)
* Thaweewat Rugsujarit (thaweewr@scg.com)
* Norapat Buppodom (new@norapat.com)
* Koravich Sangkaew (kwankoravich@gmail.com)
* Peerawat Rojratchadakorn (peerawat.roj@gmail.com)
* Surapon Nonesung (nonesungsurapon@gmail.com)
* Chanon Utupon (chanon.utupon@gmail.com)
* Sadhis Wongprayoon (sadhis.tae@gmail.com)
* Nucharee Thongthungwong (nuchhub@hotmail.com)
* Chawakorn Phiantham (mondcha1507@gmail.com)
* Patteera Triamamornwooth (patt.patteera@gmail.com)
* Nattarika Juntarapaoraya (natt.juntara@gmail.com)
* Kriangkrai Saetan (kraitan.ss21@gmail.com)
* Pitikorn Khlaisamniang (pitikorn32@gmail.com)

### Citation
If OpenThaiGPT has been beneficial for your work, kindly consider citing it as follows:

#### Bibtex
```bibtex
@misc{yuenyong2024openthaigpt15thaicentricopen,
      title={OpenThaiGPT 1.5: A Thai-Centric Open Source Large Language Model}, 
      author={Sumeth Yuenyong and Kobkrit Viriyayudhakorn and Apivadee Piyatumrong and Jillaphat Jaroenkantasima},
      year={2024},
      eprint={2411.07238},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2411.07238}, 
}
```
#### APA Style (for TXT, MS Word)
```
Yuenyong, S., Viriyayudhakorn, K., Piyatumrong, A., & Jaroenkantasima, J. (2024). OpenThaiGPT 1.5: A Thai-Centric Open Source Large Language Model. arXiv [Cs.CL]. Retrieved from http://arxiv.org/abs/2411.07238
```
<i>Disclaimer: Provided responses are not guaranteed.</i>