melodymaster-v1 / README.md
Andybeyond's picture
Update README.md
6088500 verified
|
raw
history blame
2.12 kB
metadata
license: mit
language: en
base_model: facebook/musicgen-medium
pipeline_tag: text-to-audio
tags:
  - audio
  - music-generation
  - text-to-music
  - musicgen
  - transformers
library_name: transformers
metrics:
  - type: audio_quality
    value: '32000'
    name: sample_rate
  - type: generation_length
    value: '30'
    name: max_duration_seconds
datasets: []

MelodyMaster V1

MelodyMaster V1 is an AI music generation model based on Meta's MusicGen-medium architecture. It generates high-quality music from text descriptions.

Model Description

  • Model Architecture: MusicGen (3.3B parameters)
  • Base Model: facebook/musicgen-medium
  • Task: Text-to-Music Generation
  • Output: 32kHz audio samples
  • Max Duration: 30 seconds

Usage

from transformers import AutoProcessor, MusicgenForConditionalGeneration

# Load model and processor
model = MusicgenForConditionalGeneration.from_pretrained("opentunesai/melodymasterv1")
processor = AutoProcessor.from_pretrained("opentunesai/melodymasterv1")

# Process text and generate music
inputs = processor(
    text=["happy rock song with electric guitar"],
    padding=True,
    return_tensors="pt",
)

audio_values = model.generate(**inputs, max_new_tokens=1500)

Example Prompts

  • "An upbeat electronic dance track with a strong beat"
  • "A peaceful piano melody with soft strings"
  • "A rock song with electric guitar and drums"
  • "Jazz trio with piano, bass and drums"

Demo

Try the model in our Gradio Demo Space

License

Apache 2.0

Acknowledgments

Based on Meta's MusicGen model. Original model card: facebook/musicgen-medium

Citation

@article{copet2023simple,
      title={Simple and Controllable Music Generation}, 
      author={Jade Copet and Felix Kreuk and Itai Gat and Tal Remez and David Kant and Gabriel Synnaeve and Yossi Adi and Alexandre Défossez},
      year={2023},
      journal={arXiv preprint arXiv:2306.05284},
}