metadata
license: mit
language: en
base_model: facebook/musicgen-medium
pipeline_tag: text-to-audio
tags:
- audio
- music-generation
- text-to-music
- musicgen
- transformers
library_name: transformers
metrics:
- type: audio_quality
value: '32000'
name: sample_rate
- type: generation_length
value: '30'
name: max_duration_seconds
datasets: []
MelodyMaster V1
MelodyMaster V1 is an AI music generation model based on Meta's MusicGen-medium architecture. It generates high-quality music from text descriptions.
Model Description
- Model Architecture: MusicGen (3.3B parameters)
- Base Model: facebook/musicgen-medium
- Task: Text-to-Music Generation
- Output: 32kHz audio samples
- Max Duration: 30 seconds
Usage
from transformers import AutoProcessor, MusicgenForConditionalGeneration
# Load model and processor
model = MusicgenForConditionalGeneration.from_pretrained("opentunesai/melodymasterv1")
processor = AutoProcessor.from_pretrained("opentunesai/melodymasterv1")
# Process text and generate music
inputs = processor(
text=["happy rock song with electric guitar"],
padding=True,
return_tensors="pt",
)
audio_values = model.generate(**inputs, max_new_tokens=1500)
Example Prompts
- "An upbeat electronic dance track with a strong beat"
- "A peaceful piano melody with soft strings"
- "A rock song with electric guitar and drums"
- "Jazz trio with piano, bass and drums"
Demo
Try the model in our Gradio Demo Space
License
Apache 2.0
Acknowledgments
Based on Meta's MusicGen model. Original model card: facebook/musicgen-medium
Citation
@article{copet2023simple,
title={Simple and Controllable Music Generation},
author={Jade Copet and Felix Kreuk and Itai Gat and Tal Remez and David Kant and Gabriel Synnaeve and Yossi Adi and Alexandre Défossez},
year={2023},
journal={arXiv preprint arXiv:2306.05284},
}